混流式喷水推进器的性能试验与数值计算
2012-03-23常书平王永生丁江明苏永生
常书平,王永生,丁江明,苏永生
(海军工程大学 船舶与动力学院,湖北 武汉 430033)
近年来,我国先后从Rolls-Royce公司、MJP公司、Alamarin公司和Hamilton公司引进了多型混流式喷水推进器用于高性能或特殊用途的舰船上.混流式喷水推进器具有轴向长度短、功率密度大、过流能力强、汽蚀性能好等特点,设计难度较高[1-3].目前,国内自主成功研发混流式喷水推进器的案例还很少.作者针对“飞鹰一号”快艇的快速性需求设计了一新型混流式喷水推进器,命名为SD-HGD266.本文将采用试验研究和数值模拟两种手段,综合检验该型喷水推进器是否达到了设计要求.
1 喷水推进器的主要参数
SD-HGD266型混流式喷水推进器的设计参数为:比转速ns=449,流量系数KQ=0.78,扬程系数KH=0.325,功率系数KP=2.859.各无量纲参数的定义为
式中:Q是流量,m3/s;n是转速,r/s;D是叶轮直径,m;H是扬程,m;P是功率,kW.
SD-HGD266型混流式喷水推进器的主要结构参数为:叶轮进口直径D1=266 mm,泵壳最大直径Dmax=334 mm,喷口直径Dj=155 mm,叶轮叶片数z1=4,整流器叶片数z2=7.
图1 SD-HGD266喷水推进器三维造型Fig.1 3D modeling of SD-HGD266 waterjet
2 喷水推进器的台架试验
制作了实尺喷水推进器样机,在清水试验台上进行性能测试,试验管路布置如图2.进水流道底座作为进水流道与船底的过渡段,是为了更好地适应实船航行时的来流条件,台架试验时没有将其包括在内.另外,由于样机的喷口没用法兰盘结构而不便与试验管路连接,台架试验时采用了等外径的专用整流器.
图2 喷水推进器试验管路布置Fig.2 Configuration of waterjet bench
台架性能试验按以下步骤进行:
1)电机启动前,出口阀闸关闭.
2)电机启动后,出口阀闸开到最大.待管路内流动稳定后,从最大流量逐渐关小阀闸.每个流量点运行5 min待流动稳定后,记录进口压力、出口压力、电压、电流和转速等数据.
3)从小流量点逐渐开大阀闸.每个流量点运行5 min待流动稳定后记录数据.
4)流量从大到小和从小到大各测量15个流量点,所有点覆盖高效区.待前一组试验完毕,停车4 h后再进行下一组试验,共进行3组试验.
扬程和功率计算公式分别为:
式中:Pout和Pin分别是出口和进口平均压力;Vout和Vin分别是出口和进口的平均速度;Δz是出口面至进口面中心轴线的垂直距离;U是电压;I是电流; cos φ是功率因数;η是电机效率.
从图3可得各组试验数据趋势一致、集中性强,这说明试验具有较好的可重复性,增强了试验结果的可信度.
图3 喷水推进器台架试验结果Fig.3 Bench test results of waterjet
3 台架喷水推进器的性能计算
3.1 数值模型
采用SST湍流模型[4]封闭RANS方程来求解喷水推进器内部三维流场.连续性方程[5]和动量方程分别为:
式中:fi为体积力;p为作用在流体上的压力;ρ为水密度;μ为水的分子粘性系数;μt为湍流动力粘性系数.
采用分块六面体结构化网格对各部件进行离散,如图4.叶轮和整流器分别采用了H型和J型拓扑结构,叶片周围嵌入O型网格进行加密,叶顶间隙采用了数层独立的H型网格,进水流道及旋转轴附近网格作加密处理以满足湍流模型对y+的要求,网格总数为2.27×104.
图4 各部件网格Fig.4 Mesh of every component
采用基于中心节点控制的有限体积法离散控制方程,基于SIMPLEC算法求解速压耦合方程.进口边界给定流量,出口边界设置为环境压力.旋转叶轮和静止部件之间的耦合采用多重参考坐标系(MRF)[6]模型,叶轮轮毂和叶轮叶片设置为相对静止无滑移壁面,其他壁面设为绝对静止无滑移壁面.
3.2 计算结果分析
将计算结果与3组试验数据的平均值比较如表1和图5,分析可得:
1)在设计点计算值与试验值吻合良好,扬程、功率和效率的误差分别为0.1%、4.6%和1.78%.
2)计算所得性能曲线与试验曲线趋势一致.其中,扬程最大误差小于8%,功率最大误差小于5%.
3)试验值最高效率点KQ=0.766、η=0.847,计算值最高效率点KQ=0.794、η=0.830,两者偏差较小.
表1 设计点的试验值与计算值Table 1 Comparison of test data and calculated data at the design condition
图5 台架试验值与计算值对比Fig.5 Comparison of bench test data and calculated data
图6 真实整流器的性能曲线Fig.6 Waterjet performances of with the real diffuser
在验证了数值方法可信性的基础上,建立了真实整流器的数值模型.将出口取压点位置移到喷口处,以与设计参数中扬程H的定义一致.真实喷水推进器的性能计算曲线如图6,分析可得:设计点的计算值KH=0.324,KP=2.838,η=0.875,达到了设计要求;在设计点左右较宽流量范围内(0.9KQ~1.15KQ),效率都达到0.85以上,这对喷水推进器运行的稳定性和经济性十分有利;该喷水推进器的设计点基本上就是最高效率点,说明设计点把握较准确.
4 装船喷水推进器性能计算与验证
实船喷水推进器工作时会受船体边界层的影响,进入进水流道的水流是不均匀的.选取计算域时应将流道进水口外船体下方的流体也包括在内[7].“飞鹰一号”快艇装配的2台SD-HGD266喷水推进器关于艇体中剖面对称,为了节省计算资源,只建立了一台喷水推进器和一半船底的流场计算域如图7.船体中剖面设为对称面边界条件,船底流场控制体进流面设为速度进口,喷口压力和船底水出流压力设为环境压力.
图7 实船喷水推进器数值计算域Fig.7 Computational region of the installed waterjet
根据数值计算结果可得到流场中各点的速度、压力等物理量,通过积分求取出喷水推进器各壁面上的压力和粘性力,将各个面上力相加即得到喷水推进器产生的总推力,这就是壁面积分法[8-9].由于喷水推进器与船体之间存在相互作用,使得喷水推进器净推力Tnet与裸船阻力RBH有如下关系[10]:
式中:t为推力减额[11].
将计算得到的喷水推进器的等转速推力特性曲线和“飞鹰一号”快艇的阻力特性曲线叠加到一起,如图8.各个交点对应的航速就是该艇在相应的喷水推进器转速条件下所能达到的航速,如表3.分析可得:该艇达到了设计航速要求(37 kn);各转速条件下,数值预报的航速与实际试航值吻合较好,最大偏差约为2.68%.
表2 喷水推进船的航速预报值与实船航行值比较Table 2 Speed comparison between the forecast results and the real sailing data
图8 喷水推进船的航速预报Fig.8 Speed forecast of waterjet ship
喷水推进船航速预报偏差的原因可能有:
1)计算时不同部件采用不同的坐标系,在网格交界面两侧进行数据传递时会有一定的误差.另外,进水流道某些地方(如唇部、流道与船底交接处等)较难生成高质量网格.
2)喷水推进器内的流动常伴有流动分离、二次流等现象,湍流模型的适用性有待进一步研究.
3)文中以船艉底板近似代替船体,没用考虑船体姿态变化对喷水推进器的进流的影响,由此会产生一定误差.
4)目前国际上对喷水推进船推力减额的研究还相对不成熟,本文采用的推力减额方案对于“飞鹰一号”快艇的适用性还需进一步检验.
5)本文数值模型中没有考虑轴承摩擦等机械损失,也没有考虑诸如喷水推进器样机的制造工艺如叶顶实际间隙偏大、过流部件表面粗糙度大等不利因素.
5 结束语
采用台架性能试验、装船试航和数值模拟等手段,对SD-HGD266新型混流式喷水推进器性能进行了综合检验.结果表明,该型喷水推进器达到了设计要求,可作为国内自主研发喷水推进器的一个成功案例.数值计算手段可较准确地预报喷水推进器的性能,可为喷水推进船最终达到设计航速提供保障.
[1]ZANGENEH M,DANESHKHAH K,DACOSTA B.A multi-objective automatic optimization strategy for design of waterjet pumps[C]//International Conference of Waterjet Propulsion 5.London,UK,2008.
[2]TAYLOR T E,KERWIN J E,SCHERER J O.Waterjet pump design and analysis using a coupled lifting-surface and RANS procedure[C]//International Conference on Waterjet Propulsion 2.Amsterdam,Holand,1998.
[3]蔡佑林,焦松,王立祥,等.应用可控速度矩法设计的喷水推进混流泵试验研究[J].流体机械,2010,38 (9):1-4.
CAI Youlin,JIAO Song,WANG Lixiang,et al.Test research on waterjet mixed-flow pump designed by controllable velocity moment method[J].Fluid Machinery,2010,38 (9):1-4.
[4]MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J].AIAA Journal,1994(32):1598-1605.
[5]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004:7-13.
[6]NORBERT B,VERBEEK R.CFD simulations of the flow through a waterjet installation[C]//International Conference on Waterjet Propulsion 4.London,UK,2004.
[7]刘承江,王永生,张志宏.喷水推进器数值模拟所需流场控制体的研究[J].水动力学研究与进展,2008,23 (5):592-595.
LIU Chengjiang,WANG Yongsheng,ZHANG Zhihong.Study on flow control volume in numerical simulation of waterjet propulsor[J].Chinese Journal of Hydrodynamics,2008,23(5):592-595.
[8]NORBERT B.Numerical analysis of a waterjet propulsion system[D].Netherlands:Library Eindhoven University of Technology,2006:161-164.
[9]刘承江,王永生,张志宏,等.喷水推进器推力的CFD计算方法研究[J].计算力学学报,2008,25(6):927-931.
LIU Chengjiang,WANG Yongsheng,ZHANG Zhihong,et al.Research on computational methods of waterjet thrust using CFD[J].Chinese Journal of Computational Mechanics,2008,25(6):927-931.
[10]DONNELLY M,GOWING S.Overview of recent developments in testing of waterjet at NSWCCD[C]//International Conference of Waterjet Propulsion 5.London,UK,2008.
[11]PURNELL J.Waterjet self-propulsion model test for application to a high-speed sealift ship[R].Togo:CDI Marine Company,2007.