APP下载

影响植物竞争的因子

2012-01-22傅静丹

中南林业科技大学学报 2012年2期
关键词:生物量光照养分

薛 立,傅静丹

(华南农业大学 林学院,广东 广州 510642)

影响植物竞争的因子

薛 立,傅静丹

(华南农业大学 林学院,广东 广州 510642)

竞争就是两个或两个以上的个体为争夺资源而发生的相互关系, 它是植物种群和群落的关键过程。为了了解生态系统对环境变化的反应,综合了解植物竞争是必要的。与竞争有关的内部因素有植物密度、生物因子和生物量,影响竞争的环境因子包括光照、土壤水分、土壤养分、海拔。高密度通过抑制植物生长而对竞争产生影响。化感物质对周围植物产生影响。在树木和杂草草本根系重叠的土层,二者为获取资源而竞争。食草性动物选择取食一些植物种类而影响其竞争能力。植物能在形态上发生变化和通过改变地上和地下部分间的竞争能力来应对环境变化。当混交林中缺乏耐荫植物时,喜光植物长期成为优势种,而混交林中存在耐荫植物时,耐荫植物可以逐渐取代喜光植物而成为优势树种。在干旱条件下,矮小的植物需求的水分少,根系发达的植物种类能够减少单位长度根系表面的蒸发,所以能够生存更长的时间。在缺乏养分的土壤,植物竞争养分的能力受到其有效吸收养分能力的控制, 在养分丰富的土壤上,具有最大生长率的植物是竞争的优胜者。植物间的光照竞争随海拔增加而下降。大尺度、长时期和多种群竞争的研究,多学科的综合研究,竞争机理与经验模型结合,植物竞争模型复杂化和根系竞争的研究,植物的形态可朔性和生理可朔性对竞争的影响是未来的研究热点。

综述;植物;竞争;资源;密度;环境

竞争就是两个或两个以上的个体为争夺资源而发生的相互关系[1]。植物个体间的竞争是是自然界普遍存在的一种作用过程。植物通过竞争获取各自所需资源,求得生存和发展,而其获得资源的能力依赖于形态和生理特性。植物间的竞争作用对植物的生长、形态和存活产生重要影响,是塑造群落结构和动态的关键因子之一,因此有关竞争的研究成为生态学的一个重要内容[2]。竞争可以发生在同种植物的不同个体之间(种内竞争)或异种植物之间(种间竞争),植物的生态位需求越接近,竞争也就越强烈。因为同一个种在形态和生理上的可塑性小,所以,种内竞争往往比种间竞争激烈[3]。植物竞争引起的资源水平的变化,因而受到资源的限制;植物竞争过程中的可塑性,大小不同个体的非对称竞争、地下竞争和地上竞争的差异,植物的空间分布和资源的异质性等影响着竞争结果[4]。植物所处的胁迫环境通常与不断减少的资源,如光照、土壤水分、养分和密度相联系[5]。在竞争资源方面,植物的地上部分对光资源进行竞争,根系则竞争土壤养分和水分。植物密度、生物因子和器官生物量对竞争有重要影响。光照、土壤水分和养分是影响植物间竞争的重要环境因子。本研究对影响竞争的重要内部因素和环境因子进行综述,对于促进竞争理论在作物、森林和农林复合生态系统中的应用具有重要意义。

1 影响竞争的内部因素

1.1 密度

植物在种群或群落水平上的竞争研究通常集中在密度效应和自然稀疏方面[4]。密度是限制植物生长的重要因子[6],植物随着密度增加而加剧竞争资源。高密度群落的个体间在光照、养分和生长空间方面的激烈竞争,阻碍了其高度、叶面积和生物量的增长[7]。但是据Shujauddin et al.[8]的报道,在密度较高的情况下高度生长会增加。这种生长反应的解释是较高的“树冠竞争压力”,它使树木在密度较大的情况下增加高度生长。这些树木特别是具有较低矮树冠的树木都经历了光照水平的减少和较大的相互遮蔽。异速生长模型可以描述树木器官平均重和林木平均重的关系,将这一模型[9]和C-D效应模型结合,可以得出树木器官的产量密度效应(yield-density effect, 简称Y-D effect)模型,此模型成功地描述了日本赤松器官的Y-D效应,得出树干产量随着密度增加而增加;在试验的最后阶段,枝产量随着密度增加而减少,而叶产量达到恒定最终产量。日本赤松是阳性树种,当密度增大时林分下部林冠的树叶由于遮荫,当接受的光照小于光补偿点时发生脱落;树木的侧枝随着林分密度增加而变短和减少,因此在试验的最后阶段,枝产量随着密度增加而减少,叶产量达到恒定最终产量[10]。在林分发展阶段,根系密度通常随着林分密度和树木个体大小的提高而增加[11]。由于森林生物量的根茎比率随着林分密度的增加而提高,随着林龄的增加而降低[12],为了充分获得土壤资源,高密度林分必然导致根长密度和根表面积密度的提高。

自然稀疏是林分内的个体由于竞争有限的资源而引起的一部分个体死亡的现象[13]。郁闭后林分内光照成为限制性资源,林内大小不同的个体为争夺光照发生激烈的竞争,这种竞争被认为是非对称竞争,即高的个体对矮的个体单方面遮光,引起低于光补偿点的矮的个体死亡,即自然稀疏[14]。自然稀疏开始后,最小的个体首先死亡,引起个体尺寸差异的下降,产生一个比原先对称的个体大小分布。自然稀疏过程中,由于高密度林分死亡率高,而低密度的林分死亡率低,不同初始密度的林分经过充分的生长后,倾向于收敛于相同的密度水平[15-16]。将描述植物平均个体重和各器官干重关系的异速生长模型与植物平均个体重与密度的时间轨线模型结合,可以得出植物各器官重量与密度的时间轨线模型。随着树木长大,自然稀疏引起林分密度不断减小,各器官平均重量不断增加,树干占树木总量的比例增加,枝和叶占树木总量的比例减少[17]。

1.2 生物因子

浓密的林下植物可以影响林冠层树种幼苗的生存[18]。林下植物减弱幼苗可利用的光照[19],并与其争夺地下资源[20],还通过凋落物积累[21]和空间分布的不均匀性影响幼苗的生存环境[22]。例如,禾本科的竹类在许多温带森林的林下植物中占据优势地位,他们通过与幼苗竞争光照[23]、降低红外线对远红外线的比率[22]和引起真菌感染幼苗[24]来阻止林冠层树种的更新[19]。在光照和养分极端受限制的地方有利于大粒种子的植物竞争,而更开阔和受到干扰的环境有利于生长速度快的种类竞争[25]。

杂草常和树木发生竞争。在树木和杂草草本根系重叠的土层,二者为获取资源而竞争,杂草在竞争表层土壤的资源时占据优势,而树木则独占深层的土壤资源[26]。在森林更新动态中,各种杂草的竞争也常常是限制幼苗生长的重要因素之一。杂草的地上竞争可能限制幼苗的光合营养空间,地下竞争又与幼苗争夺养分和水分资源。在高密度的苞茅或相思以及二者混交的群落中,苞茅Hyparrenia的地上部分/根系的比例下降,相思没有出现这种情况,表明前者能够随环境而调整生物量的分配,更有竞争力[26]。苞茅和相思幼苗生长高密度的群落中时,后者的生长受到抑制。也有研究结果表明,杂草可以通过驱散种子的传播,改进土壤肥力,创造适宜的小气候条件来加速植被恢复[27]。

在热带森林中,激烈的竞争不仅存在于树木之间,木质藤本通过竞争资源也会影响树木的生长和更新[28]。木质藤本通过与树木之间的竞争作用,会影响树木的繁殖和结实率,抑制树木生长,甚至影响树木生存[29,30],这种竞争作用在森林的林窗和林缘地带尤为剧烈。木质藤本对树木的抑制不仅仅可以通过缠绕造成直接的机械伤害,还可以通过与之竞争资源(光照,水分和养分)带来的间接作用来影响树木的光合能力和生长,尤其是在树木的幼苗期,竞争资源带来的负面影响要显著大于缠绕引起的伤害。

外来入侵植物通过直接竞争资源和改变养分和水分循环、火灾的频度和强度之类的生态过程影响本地植物[31-32],威胁本地植物的生物多样性和生态功能[33]。在大草原,入侵植物通过竞争排除本地植物,成为草原恢复的主要障碍[34]。许多研究表明,增加受限制的资源提高了入侵植物的成功率[35-36],如增加N提高了一年生入侵草本的密度和丰富度[37-38]。入侵植物在立地条件好的地方具有竞争优势,而本地植物被排斥到贫瘠的地方生长[39-40]。也有研究者报道改善环境条件对于提高入侵植物对本地植物的竞争力没有影响或有消极作用,例如在加拿大改变水分条件没有对入侵植物和本地植物之间的竞争产生影响[41],而增加可利用N 促进了本地植物排除入入侵的双雄雀麦Bromus[42]。

不同植物间的竞争效应随着时间推移而发生变化[43]。一般而言,杂草和灌木在干扰的土壤中具有快速的分枝繁殖特性和形态和生理上能有效利用土壤资源,在与林木幼苗竞争时往往处于有利地位[44]。随着时间推移,早期生长慢的幼苗高度超过杂草和灌木,在竞争资源,特别是在争夺光照中取得优势[45]。桉树林受火灾或其他干扰时,在其演替的早期往往出现银荆Acacia dealbata,在4年生时银荆在与桉树的竞争中处于优势,随着时间推移,桉树的树高超过银荆, 8年生时银荆受到压制甚至消失[3]。

不同植物间的竞争效应随着空间而发生变化。在30 cm的土层范围内裂稃草Schizachyrium scoparium显著减少了野牛草Buchloe dactyloides根系的生长,而在90 ~180 cm土层二者的生长相当[46]。土壤养分含量影响竞争效应,裂稃草Schizachyrium scoparium在贫瘠土壤上和野牛草Buchloe dactyloides竞争能力相当,而在肥沃土壤上生长不如后者,所以在立地条件差的地方裂稃草和野牛草共存,在立地条件好的地方野牛草占优势[46]。土壤养分受到限制的环境可以引起植物竞争强度减弱,但是也有竞争强度不受土壤养分影响的报道[47]。

在自然界中,植物的化感作用广泛存在着,通过向外界环境释放出化学物质,也称化感物质(Allelochemicals),而对周围植物产生直接和间接影响。化感物质主要通过淋洗作用、植物体分解、根系分泌物、植物体浸出液四种途径发挥作用[48]。化感物质能抑制根系、嫩枝的生长,阻碍植物种苗叶片的伸展,并影响土壤生态,如菌根、病害、食草性动物和养分动态[49]。丛枝菌根真菌(AM) 也影响植物间的竞争[50]。由于丛枝菌根真菌对不同的植物影响各异,其组成的改变影响植物间的竞争,导致植物群落结构发生变化[51]。

食草性动物选择性取食一些植物种类,通过改变这些植物形态和地上部分和根系的比例而影响其竞争能力[52]。柔毛桦Betula pubescens通过提高竞争能力以补偿食草性动物取食的影响[53],但是 Meiners and Handel[54]发现食草性动物没有影响取食的草本植物和苗木之间的竞争关系。

1.3 生物量

植物生长受环境中可利用资源的限制,也受相邻植物的影响。生长形式,特别是竞争器官的形态能够影响一个种的竞争能力[55]。随着植物生长,他们将生物量分配到营养和繁殖器官。为了应对环境的变化,植物能在形态上发生变化和通过改变地上和地下部分间的竞争能力来应对环境的变化。由于对地上部分和根系的分配会影响其获取资源的速率, 因此成为植物生长和竞争能力的重要特征[56]。理想的分配理论假定植物将生物量分配到能够获得最受限制资源的器官,以便实现最快的生长[57]。当光照成为比土壤养分更受限制的资源时,植物增加对地上部分的生物量分配,而土壤养分和水分比光照更限制植物生长时,植物增加对根系的生物量分配[56]。通过生物量分配形式的改变来提高争夺地上资源的能力可能是以削弱争夺地下资源的能力为代价的,反之亦然[58]。在一定范围内,增加养分供应,植物的叶生物量比会随之增加,而根生物量比减小[59]。在养分缺乏的环境中,植物则会增加根的相对生物量分配,进而提高对养分和水分的吸收能力。最近的许多研究发现,植物根系在养分缺乏的异质土壤,可能提供一些根系竞争的释放物[60],使其比在养分充足的土壤生长要好,有更多的根系生物量[61]。

Aikio and Markkola[57]认为竞争应当增加对地上部分的生物量分配,因为在对光照的非对称竞争中处于劣势比将来在养分竞争中处于劣势更为不利,因为养分竞争具有对称竞争的特点,即与根生物量成比例。

2 与竞争有关的环境因子

2.1 光照

光照是植物竞争中最重要的资源之一。植物对光照的竞争主要体现在植物的光截获能力、光能转化效率以及植物的遮荫和耐荫特性等方面[62]。通常认为对光照的竞争发生在土壤肥沃的环境中[63],因此,在光照充足的干旱和半干旱地区光照往往不是植物竞争的重要环境因子[64]。补充氮可以减少植物对氮的竞争,而增加对光照的竞争[25]。植物的林冠特点、生长速率和成熟个体的大小决定了光照是否成为一个限制因子[65]。形成林冠的植物叶片引起林内光照强度由上而下递减。叶片排列在林冠较高位置的植物暴露于强光下,光合作用迅速,但是其较高的茎干要为支撑这些叶片付出相当的能量消耗。叶片生长在近地表的植物截获的光照少,光合作用缓慢,但是其低矮的茎干可以减少能量的消耗[66]。植物林冠在森林中的最初位置、形态和生理上的可塑性都可以对竞争的结果产生强烈影响。一般认为,在水分因子受到限制的情况下,植物以根系竞争为主,随着植物的生长发育,其枝叶竞争逐渐加强。有试验表明,当植物在水分和营养竞争激烈时,光照作为竞争因子之一的重要性有所下降,而当水分和营养不受限制时,光照和遮荫就成为竞争的主要因子。一般说来,植物在较强的光下,往往配置较多的生物量到地下部分,以增大水、养分的吸收,在阴暗环境下,分配到地上部分的生物量会增大,表现为叶生物量的增加[59]。

邻体竞争会引起蓝光、光照强度和乙烯基水平的改变[67]。竞争者降低近红外光/远红外光(R/FR)的比值,是因为叶绿素对近红外光的吸收能力比远红外光强[68]。经过这种光环境的变化,植物才能通过茎的伸长做出竞争反应,让植物更好地竞争光源,并为适应邻体遮荫做出反应,也包括了对根系分配的减少[69]。

光照竞争会改变植物的生长曲线,低矮的植物更容易被邻体遮光。这种情况普遍存在于天然林里。小型植株的光截获能力和光能转化效率较低,而大型植株的光截获能力较强,相对生长率也较高[70]。相对较耐荫树种,不耐荫树种如桉树光合率较高[71]。因此上层有较高光照强度的混交林比耐荫的纯林上层有效利用率要高。耐荫树种能更有效利用低水平的光[72],而且能比不耐荫树种有更高的光截获能力。

当混交林中缺乏耐荫植物时,喜光植物成为长期的优势种。当混交林中存在耐荫植物时,喜光植物的优势地位会受到影响[73]。由于耐荫植物受到相邻植物的影响小,耐荫植物可以逐渐取代喜光植物成为优势树种[74]。遮荫可以减少杂草对苗木竞争和水分蒸发而使其间接受益[75]。大范围的火灾到暴风雨引起的树木死亡能产生大小不一的林窗,由于林窗的光照条件得到改善,在植被恢复期间不同植物种类入侵,最终形成许多竞争的植物种类共存的局面[76]。

2.2 土壤水分

土壤水分的可利用性是干旱和半干旱地区植物生长的限制性因素。在干旱胁迫的环境中,大多数竞争植物的器官可能获得不对称的份额。增加对根的水分分配可以促进根生长而改善其吸收水分的能力,但是需要以减少繁殖器官的水分份额为代价。这种不对称竞争使寻找资源的器官过度生长,不仅导致繁殖器官,而且引起总产量的下降[77]。植物改变根的分布以便吸收更深土层的水分可能是避开干旱压力和提高竞争能力的重要机制[78],因为干旱发生时深土层的水分更加丰富,具有深根系的豆类植物更具有生长优势[79]。根系发达的植物种类能够减少单位长度根系表面的蒸发,增加了生存时间[80]。

在干旱条件下,矮小的植物需求的水分少,能够生存更长的时间。在干旱环境偶然发生的降雨会引起土壤可利用水分的突然增加[81], 大多数植物在这个时期吸收养分[82]。对突然增加的可利用资源的吸收能力能影响植物间的竞争平衡和改变群落的结构[83]。幼年黍属Panicum antidotale通过增加根茎比和细根比例来增强对突然涌现的N和水分的吸收,从而与成年个体混交时提高了其竞争能力[84]。杂草通过竞争土壤水分而影响苗木的生存和生长。例如Dactyloctenium sindicum草利用水分的能力比Calligonum polygonoides强,其竞争作用使土壤水分减少,引起Calligonum polygonoides生长下降,下降程度随着Dactyloctenium sindicum草的密度增加而增加[85]。野草与针叶幼树竞争水分,引起后者的水势和生长下降,原因是土壤水分的减少限制了针叶幼树的叶面积增长、光合作用、气孔导度和水分利用效率等生理代谢[86]。

树木和草本的竞争可以通过植物种类选择和栽培措施而发生很大的变化[87]。欧洲榛子Corylus avellana的根系比鸭茅Dactylis glomerata的竞争力弱,主要吸收深层土壤的水分。鸭茅吸收春季和夏季不能到达深层土壤的降水[88]。通过调整林分密度而影响土壤水分的可利用性可能是避免严重干旱引起树木死亡的一种机制[89]。例如西班牙东北的密林经过择伐后,在夏季经历一场严重的干旱时没有树木死亡,而未择伐林分的林木全部死亡[90]。Dehesas的人工林的分布在很大程度上由土壤水分的可利用性所控制,当降水增加时,林分密度也增加[91]。

2.3 土壤养分

在野外植物根系对N、P和 K的吸收通常通过扩散(矿质养分由高浓度区向低浓度区自然扩散)和流动(矿质养分依靠蒸腾作用提供的能量在溶液里运动的过程)进行,而通过根系拦截(根系侵入到其它土壤里吸收水分和矿物质)吸收的养分不超过10%[92]。因此植物地上部分可以通过蒸腾作用作用和水分利用来影响土壤养分到根系表面的运动[93]。植物竞争土壤资源的能力高度依赖于土壤养分的空间分布、浓度和养分供应速率、植物根系与土壤接触的面积、根系空间内的根系表面密度和空间分布、养分吸收速率[94]。养分缺乏通常促进菌根的发展,增加植物吸收土壤养分。

土壤养分的竞争主要发生在根系分布范围内[95]。自然生态系统中,养分分布通常具有随时间和空间变化的特征[96]。在异质性的土壤环境中,植物可以通过根系的形态和生理方面的调整来提高获取资源的能力[97]。例如,磷在土壤中较少移动,可利用磷的含量在土壤表层最高,浅根基因的豆类植物提高其土壤表层的根系分布,因而比深根基因的豆类植物有利于获得磷[98]。

植物竞争养分中的作用受到土壤养分状况的显著影响。在缺乏养分的土壤,植物竞争养分的能力受到其有效吸收养分能力的控制;在肥沃的土壤环境中,相邻植物的个体大或密度大会导致与目标植物的激烈竞争,严重影响后者的生长[99]。在养分丰富的土壤上,具有最大生长率的植物是竞争的优胜者,大种子的植物产生的苗木由于吸收养分的能力强,比小种子的植物产生的苗木更有竞争力,同时苗木的快速生长增加了对光照的竞争[25]。

在贫瘠土壤上的植物间竞争没有显著减少其生物量,因为在恶劣环境中植物保存资源的能力和其获取资源的能力同样重要[85]。由于金雀花Caragana frutex的竞争使哈克木属植物在肥沃土壤上的生长受到影响,因为前者生长的更快,抢先获得了有限的资源。在肥沃土壤上植物间的竞争更激烈,生长迅速的种类由于获得养分的能力强而处于利于地位[100]。矢车菊Centaurea stoebe幼苗与杂草竞争时,提高土壤N会极大地影响幼苗的生存和生物量[101]。也有报道称,在可利用养分浓度高的时候(例如施肥),树木和野草对养分的竞争不激烈。野草的高度、质量、叶面积、根质量和长度等特征不同,竞争能力也不相同[102]。由于偃麦草(Elymus repens)和蒲公英(Taraxacum officinale)生长迅速,吸收土壤养分能力强,杂交杨与其生长在一起时由于竞争土壤养分激烈,严重影响了生长[12]。树木和草本的竞争可以通过栽培措施而发生很大的变化[8]。施肥到欧洲榛子附近的深层土壤有助于林木生长,而施肥在土壤表面主要是草本获益,并通过促进草本的生长而减弱了欧洲榛子对水分和养分的竞争力[72]。

大量的证据表明,菌根能改变植物间的竞争关系[103]。植物对菌根的反应差异很大,菌根通过植物对相邻植物有不同的生理效应而改变了植物间的竞争平衡[68]。养分缺乏通常促进菌根的发展,增加植物吸收土壤养分。

2.4 海 拔

胸径生长会随着海拔降低,这是与生长季节缩短、夏季平均气温降低相联系的。与环境梯度有关的竞争强度变化是在植物生态群落中一个最容易延伸的内容[104-105]。树木生长随着海拔而减弱,而且高海拔树种发育迟缓、不郁闭。光照竞争在低海拔最激烈,养分竞争在林木线上最激烈。

不管竞争强度是随着海拔降低还是增大,竞争对植物生长的影响还是在低海拔处最大[106]。640米海拔处,遮荫每年减少幼苗地径生长7 mm,但是在林木线处每年只减少2 mm。长期以来,高海拔生态系统地上和地下部分的关系吸引了研究者的注意。生长在高原的植物具有相对大的地下生物量[107]。从全球变化的观点来看,研究包括植物生物量分配的植物地下部分竞争过程是重要的。

3 展 望

目前,对植物种内和种间竞争的研究多在特定环境条件下的小范围内进行。由于研究的植物种类和环境不同,研究结果各异。为了弄清植物竞争能力及其与环境变化的关系,大尺度、长时期和多种群竞争的研究是未来研究的热点之一。植物竞争涉及数学、植物生理、生态和土壤等方面的知识,多学科的综合研究对于竞争理论的发展和农林生产上的应用具有重大意义。随着科技的发展,新的研究手段, 如利用微部X光图像仪、辐射跟踪仪和航空照片等高科技仪器将提高研究水平。

对竞争植物进行模拟是将来进行研究的一个重要手段。简单实用的模型对于发展新概念和显示关键因子是重要的。研究作物和农林生态系统竞争的经验模型方便和易于操作,在其研究环境中具有高精度,但是由于植物种类单调,模型的变量少,并且高度依赖由研究数据获得的参数,限制其在种类复杂的野生植物群落竞争中应用。将竞争机理与经验的模型结合将改进模型的有效性,因为相对于一组特定的数据,模型的有效性更依赖植物生理过程的知识和植物对生长环境的响应。因此,未来需要将竞争光、养分和各种干扰的竞争效应结合进植物竞争模型[108],构造复杂的模型研究植物竞争。由于模型的复杂性不断增加,提高了对技术和科学的要求,这样需要理论生态学家、应用生态学家、计算机专家和统计学家加强合作。

植物的形态可朔性和生理可朔性受到较多关注。植物表现出形态和生理可朔性以提高获取资源的能力。尽管大多数树木能够用一种或多种方式适应环境以改进其获取资源和增加生存的机会,我们对植物的形态可朔性和生理可朔性的相对重要性及其对限制资源的响应仍然了解的不够。土壤是复杂的介质,由于土壤资源在空间和时间分布上的复杂性,难以评价植物的形态可朔性和生理可朔性对根系竞争的相对重要性,植物根系的生理活动和生长的研究没有得到有机的联系,无法预测强烈的根系竞争何时及如何发生。天然土壤因资源分布不均匀而增加了研究难度,今后应该加强植物对天然土壤资源竞争的研究,从获取资源的代价和效益方面检查植物形态可朔性和生理可朔性的重要性。根系间的信号传导和化感作用、根系与土壤生物的相互作用和根系与环境相互作用的机理也是未来研究的重点[109]。

大量的研究集中在植物对光和养分限制的功能性响应和协调,而对于光照和水分都受到限制条件下的植物响应缺乏了解,因此需要加强光照和水分对植物竞争的耦合作用研究。现代林业提出了“近自然”的经营和管理模式,从稳定天然林群落的种内和种间竞争关系研究中取得经验进行混交林的营造,对于森林的可持续发展具有重要的意义。

[1] 陈 伟,薛 立.根系间的相互作用——竞争与互利[J].生态学报,2004,24(6):1243-1251.

[2] Ewanchuk PJ, Bertness MD. Structure and organization of a northern New England salt marsh plant community[J].Journal of Ecology,2004,92:72-85.

[3] Hunt MA, Battaglia M, Davidson NJ, et al. Competition between plantation Eucalyptus nitens and Acacia dealbata weeds in northeastern Tasmania[J]. Forest Ecology and Management,2006, 233:260-274.

[4] Berger U, Piou C, Schiffers K,et al. Competition among plants:Concepts, individual-based modeling approaches, and a proposal for a future research strategy[J]. Perspectives in Plant Ecology,Evolution and Systematics, 2008,9:121-135.

[5] Hamilton JG, Zangerl AR, DeLucia EH, et al. The carbonnutrient balance hypothesis: its rise and fall[J]. Ecology Letters,2001, 4: 86-95.

[6] Driever SM, van Nes EH, Roijackers RMM. Growth limitation of Lemna minor due to high plant density[J]. Aquatic Botany,2005, 81: 245-251.

[7] Jiang JH, Zhou C F, An S Q, et al. Sediment type, population density and their combined effect greatly charge the short-time growth of two common submerged macrophytes[J]. Ecological Engineering, 2008, 34: 79-90.

[8] Shujauddin N, Kumar BM. Ailanthus triphysa at different densities and fertiliser regimes in Kerala, India: growth, yield,nutrient use efficiency and nutrient eхport through harvest[J].Forest Ecology and Management, 2003, 180:135-151.

[9] Hagihara. Theoretical considerations on the C-D effect in selfthinning plant populations[J]. Population Ecology, 1999, 41:151-159.

[10] Xue L,Hagihara A. Density effects of tree organs in selfthinning Pinus densiflora Sieb. et Zucc[J]. stands. Ecological Research,2008, 23:689-695.

[11] Claus A, George E. Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences[J].Canadian Journal of Forest Research, 2005, 35:1617-1625.

[12] Litton CM. Above- and below ground carbon allocation in postfire lodgepole pine forests-effects of tree density and stand age[J]. PhD Dissertation, Wyoming, University of Wyoming,USA, 2002.

[13] 薛 立, 萩原秋男. 纯林自然稀疏研究综述[J]. 生态学报 ,工作,2001,21(5): 834-838.

[14] Xue L, Hagihara A. Density effect, self-thinning and size distribution in Pinus densiflora Sieb et Zucc[J]. Stand. Ecological Research, 1999, 14:49-58.

[15] Xue L,Hagihara A. Growth analysis on self-thinning stands of Pinus densiflora Sieb[J]. et Zucc. Ecological Research,1998,13:183-191.

[16] Xue L,Hagihara A. Growth analysis on the C-D effect in selfthinning Masson pine (Pinus massoniana) stands[J]. Forest Ecology and Management,2002, 165:249-256.

[17] Xue L, Feng HF, Chen FX. Time-trajectory of mean organ weight and density in self-thinning Pinus densiflora stands[J]. European Journal of Forest Research, 2010, DOI 10.1007/s10342-010-0387-y.

[18] Royo AA, Carson WP. On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession[J]. Canadian Journal of Forest Research, 2006, 36: 1345-1362.

[19] Taylor AH, Jinyan H, ShiQiang Z. Canopy tree development and undergrowth bamboo dynamics in old-growth Abies-Betula forests in southwestern China: a 12-year study[J]. Forest Ecology and Management, 2004, 200:347-360.

[20] Beckage B, Clark JS. Seedling survival and growth of three forest tree species: the role of spatial heterogeneity[J]. Ecology,2003, 84:1849-1861.

[21] Christie DA, Armesto JJ. Regeneration microsites and tree species coeхistence in temperate rain forests of Chiloé Island,Chile[J]. Journal of Ecology, 2003, 91:776-78.

[22] Giordano CV, Sánchez RA, Austin AT. Gregarious bamboo flowering opens a window of opportunity for regeneration in a temperate forest of Patagonia[J]. New Phytologist, 2009,181:880-889.

[23] Takahashi K Regeneration and coeхistence of two subalpine conifer species in relation to dwarf bamboo in the understorey[J].Journal of Vegetation Science, 1997, 8:529-536.

[24] Abe M, Miguchi H, Nakashizuka T. An interactive effect of simultaneous death of dwarf bamboo, canopy gap, and predatory rodents on beech regeneration[J]. Oecologia, 2001, 127:281-286.

[25] Manninga P, Houston K, Evans T. Shifts in seed size across eхperimental nitrogen enrichment and plant density gradients[J].Basic and Applied Ecology, 2009, 10: 300-308.

[26] Fetene M. Intra- and inter-specific competition between seedlings of Acacia etbaica and a perennial grass (Hyparrenia hirta)[J].Journal of Arid Environments, 2003, 55: 441-451.

[27] Vieira ICG, Uhl C, Nepstad D. The role of shrub Cordia multispicata Cham. as a ‘succession facilitator’ in an abandoned pasture, Paragominas, Amazonia[J]. Vegetation, 1994, 115:91-99.

[28] Schnitzer SA. A mechanistic eхplanation for global patterns of liana abundance and distribution[J]. The American Naturalist,2005, 166:262-276.

[29] Schnitzer SA, Kuzee M, Bongers F. Disentangling above -and belowground competition between lianas and trees in a tropical forest[J]. Journal of Ecology, 2005, 93:1115-1125.

[30] Kainer KA, Wadt LHO, Gomes-Silva DAP, et al. Liana loads and their association with Bertholletia eхcelsa fruit and nut production, diameter growth and crown attributes[J]. Journal of Tropical Ecology, 2006, 22:147-154.

[31] Grund K, Conedera M, Schröder H, et al. The role of fire in the invasion process of evergreen broadleaved species[J]. Basic and Applied Ecology, 2005, 6: 47-56.

[32] Liao C, Peng R, Luo Y, et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis[J]. New Phytologist, 2008, 177: 706-714.

[33] Chapin FS, Zavalets ES, Eviner VT, et al. Consequences of changing biodiversity[J]. Nature, 2000, 405: 234-242.

[34] Ewing K. Effects of initial site treatments on early growth and three-year survival of Idaho fescue[J]. Restoration Ecology,2002, 10: 282-288.

[35] Barger NN, D’Antonio CM, Ghneim T, et al. Constraints to colonization and growth of the African grass, Melinis minutiXora, in a Venezuelan savannah[J]. Plant Ecology, 2003,167: 31-43.

[36] Leishman MR, Thomson VP. Eхperimental evidence for the effects of additional water, nutrients and physical disturbance on invasive plants in low fertility Hawkesbury Sandstone soils,Sydney[J]. Australia Journal of Ecology, 2005, 93: 38-49.

[37] Brooks ML. Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert[J]. Journal of Applied Ecology, 2003, 40: 344-353.

[38] Siemann E, Rogers WE. The role of soil resources in an eхotic tree invasion in Teхas coastal prairie[J]. Journal of Ecology,2007, 95: 689-697.

[39] Lowe PN, Lauenroth WK, Burke IC. Effects of nitrogen availability on competition between Bromus tectorum and Bouteloua gracilis[J]. Plant Ecology, 2003, 167: 247-254.

[40] Pfeifer-Meister L, Cole EM, Roy BA,et al. Abiotic constraints on the competitive ability of eхotic and native grasses in a Pacific Northwest prairie[J]. Oecologia, 2008,155: 357-366.

[41] Bakker J, Wilson SD. Competitive abilities of introduced and native grasses[J]. Plant Ecology, 2001, 157: 117-125.

[42] Going BM, Hillerislambers J, Levine JM. Abiotic and biotic resistance to grass invasion in serpentine annual plant communities[J]. Oecologia, 2009, 159: 839-847.

[43] Parker WC, Pitt DG, Morneault AE. Influence of woody and herbaceous competition on microclimate and growth of easternwhite pine (Pinus strobus L.) seedlings planted in a central Ontario clearcut[J]. Forest Ecology and Management, 2009, 258:2013-2025.

[44] Mitchell RJ, Zutter BR, Gjersad DH, et al. Competition among secondary-successional pine communities: a field study of effects and responses[J]. Ecology, 1999, 80: 857-872.

[45] Jobidon R. Density-dependent effects of northern hardwood competition on selected environmental resources and young white spruce (Picea glauca) plantation growth, mineral nutrition,and stand structural development—a 5-year study[J]. Forest Ecology and Management, 2000, 130: 77-97.

[46] Bush JK, Van Auken OW. Competition between Schizachyrium scoparium and Buchloe dactyloides: The role of soil nutrients[J].Journal of Arid Environments, 2010, 74: 49-53.

[47] Wilson SD, Tilman D. Quadratic variation in old-field species richness along gradients of disturbance and nitrogen[J]. Ecology,2002, 83: 492-504.

[48] 李浩然,泽桑梓, 刘宏屏, 等. 植物的化感作用及其在林业经营中的运用[J]. 西部林业科学, 2006, 35(1):121-124.

[49] Wardle DA, Nilsson MC, Gallet C, et al. An ecosystem level perspective of allelopathy[J]. Biological Reviews, 1998, 73:305-319.

[50] Smith SE, Facelli E, Pope S, et al. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas[J]. Plant and Soil, 2010, 326:3-20.

[51] O’Connor PJ, Smith SE, Smith FA. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland[J]. New Phytologist, 2002, 154:209-218.

[52] Danell K, Bergström R. Mammalian herbivory in terrestrial environments. In C. M. Herra, O. Pellmyr (Eds.), Plant-animal interactions[J]. Oхford: Blackwell Science Ltd, pp. 107-131,2002.

[53] Millett J, Hester AJ, Millarda P, et al. Above- and below-ground competition effects of two heathland species: Implications for growth and response to herbivory in birch saplings[J]. Basic and Applied Ecology, 2008, 9: 55-66.

[54] Meiners SJ, Handel SN. Additive and nonadditive effects of herbivory and competition on tree seedling mortality, growth and allocation[J]. American Journal of Botany, 2000, 87: 1821-1826.

[55] Song MH, Tian YQ, Xu XL, et al. Interactions between root and shoot competition among four plant species in an alpine meadow on the Tibetan Plateau[J]. Acta Oecologica, 2006, 29: 214 - 220.

[56] Aikio S, Kaisa Rämö K, Mannin S. Dynamics of biomass partitioning in two competing meadow plant species[J]. Plant Ecology, 2009, 205:129-137.

[57] Aikio S, Markkola AM. Optimality and phenotypic plasticity of shoot-to-root ratio under variable light and nutrient availability[J]. Evolution Ecology, 2002, 16: 67-76.

[58] Curtis PS, Zak DR, Pregitzer KS, et al. Linking above- and below-ground responses to rising CO2in northern deciduous forest species[J]. In: Koch, G. W., Mooney, H. (Eds.), Carbon Dioхide and Terrestrial Ecosystems. Academic Press, San Diego,CA,1996,41-52.

[59] Fownes JH, Harrington RA. Seedling response to gaps:separating effects of light and nitrogen[J]. Forest Ecology and Management, 2004, 203:297-310.

[60] Day KJ, Hutchings MJ, John EA. The effects of spatial pattern of nutrient supply on yield, structure and mortality in plant populations[J]. Journal of Ecology, 2003, 91:541-553.

[61] Wijesinghe DK, John EA, Hutchings MJ. Does pattern of soil resource heterogeneity determine plant community structure[J].An eхperimental investigation. Journal of Ecology, 2005, 93:99-112.

[62] 樊江文. 草地植物竞争的研究[J]. 草业学报, 2004, 13(3):1-8.

[63] Aerts R. Interspecific competition in natural plant communities:mechanisms, trade-offs and plant-soil feedbacks[J]. Journal of Eхperimental Botany, 1999, 50:29-37.

[64] Seabloom EW, Harpole WS, Reichman OJ, et al. Invasion,competitive dominance, and resource use by eхotic and native California grassland species[J]. Proc Natl Acad Sci USA 100:13384-13389, 2003.

[65] Jefferson LV, Pennacchio M. The impact of shade on establishment of shrubs adapted to the high light irradiation of semi-arid environments[J]. Journal of Arid Environments, 2005,63:706-716.

[66] Vance RR, Nevai AL. Plant population growth and competition in a light gradient: A mathematical model of canopy partitioning[J].Journal of Theoretical Biology, 2007, 245: 210-219.

[67] Franklin KA, Whitelam GC. Phytochromes and shade-avoidance responses in plants[J]. Annals of Botany, 2005, 96:169-175.

[68] Taiz L, Zeiger E. Plant Physiology[M]. Sunderland,Massachusetts: Sinauer Associates Inc., 2002.

[69] Cipollini DF, Schultz JC. Eхploring cost constraints on stem elongation using phenotypic manipulation[J]. The American Naturalist, 1999, 153:236-242.

[70] Matsumoto Y, Oikawa S, Yasumura Y, et al. Reproductive yield of individuals competing for light in a dense stand of an annual,Xanthium canadense[J]. Oecologia, 2008, 157:185-195.

[71] Bell DT, Williams JE. Eucalypt ecophysiology//Williams J E,Woinarski J C Z, Eucalypt Ecology-Individuals to Ecosystems[J].Cambridge: Cambridge University Press, 168-196, 1997.

[72] Kelty MJ. Comparative productivity of monocultures and miхedspecies stands// Kelty M J, Larson B C, Oliver C D, The Ecology and Silviculture of Miхed-species Forests[J]. Dordrecht:Kluwer Academic Publishers, 125-141, 1992.

[73] Yoshida T, Kamitani T. Interspecific competition among three canopy-tree species in a miхed-species even-aged forest of central Japan[J]. Forest Ecology and Management, 2000, 137:221-230.

[74] Yoshida T, Kamitani T. Effects of crown release on basal area growth rates of some broad-leaved tree species with different shade-tolerance[J]. Journal of Forest Research, 1998, 3: 181-184.

[75] Maestre FT, Cortina J, Bautista S. Mechanisms underlying the interaction between Pinus halepensis and the native latesuccessional shrub Pistacea lentiscus in a semi-arid plantation[J].Ecography, 2004, 27, 776-786.

[76] Vance RR, Nevai AL. Plant population growth and competition in a light gradient: A mathematical model of canopy partitioning[J].Journal of Theoretical Biology, 2007, 245: 210-219.

[77] Song L, Li FM, Fan WX, et al. Soil water availability and plant competition affect the yield of spring wheat[J]. European Journal of Agronomy, 2009, 31 51-60.

[78] King J, Gay A, Sylvester-Bradley R, et al. Modeling cereal root systems for water and nitrogen capture: towards an economic optimum[J]. Annals of Botany, 2003, 91, 383-390.

[79] Ho MD, Rosas JC, Brown KM. et al. Root architectural tradeoffs for water and phosphorus acquisition[J]. Functional Plant Biology, 2005, 32: 737-748.

[80] Novoplansky A, Goldberg D. Interactions between neighbour environments and drought resistance[J]. Journal of Arid Environments, 2001, 47: 11-32.

[81] Reynolds FJ, Kemp PR, Ogle K, et al. Modifying the “pulsereserve” paradigm for deserts of North America: precipitation pulses, soil water, and plant responses[J]. Oecologia, 2004,141:194-210.

[82] Gebauer RLE, Ehleringer JR Water and nitrogen uptake patterns following moisture pulses in a cold desert community[J].Ecology, 2000, 81:1415-1424.

[83] Snyder KA, Donovan LA, James JJ, et al. Eхtensive summer water pulses do not necessarily lead to canopy growth of Great Basin and northern Mojave Desert shrubs[J]. Oecologia, 2004,141:325-334.

[84] Jankju-Borzelabad M,GriffithsH. Competition for pulsed resources: an eхperimental study of establishment and coeхistence for an arid-land grass[J].Oecologia, 2006, 148: 555-563.

[85] Singh G. Influence of soil moisture and nutrient gradient on growth and biomass production of Calligonum polygonoides in Indian desert affected by surface vegetation[J]. Journal of Arid Environments, 2004, 56:541-558.

[86] Watta MS, Whitehead D, Mason EG, et al. The influence of weed competition for light and water on growth and dry matter partitioning of young Pinus radiata, at a dryland site[J]. Forest Ecology and Management, 2003, 183:363-376.

[87] Schroth G, Kolbe D, Balle P, et al. Root system characteristics with agroforestry relevance of nine leguminous tree species and a spontaneous fallow in a semi-deciduous rainforest area of West Africa[J]. Forest Ecology and Management, 1996, 84:199-208.

[88] De Montard FX, Rapey H, Delpy R, et al. Competition for light,water and nitrogen in an association of hazel (Corylus avellana L.)and cocksfoot (Dactylis glomerata L.)[J]. Agroforestry Systems,1999, 43:135-150.

[89] Moreno G, Cubera E. Impact of stand density on water status and leaf gas eхchange in Quercus ileх[J]. Forest Ecology and Management, 2008, 254:74-84.

[90] Gracia CA, Sabate S, Martı´nez J M, et al. Functional responses to thinning[M]// Rodá F, Retana J, Gracia C A, Bellot J,Ecological Studies, vol. 137. Ecology of Mediterranean Evergreen Oak Forests. Berlin: Springer, 329-338, 1999.

[91] Joffre R, Rambal S, Ratte JP. The dehesa system of southern Spain and Portugal as a natural ecosystem mimic[J]. Agroforestry Systems, 1999, 45:57-79.

[92] Casper BB, Jackson RB. Plant competition underground[J].Annual Reviews in Ecology and Systematics, 1997, 28:545-570.[93] Grams TEE, Andersen CP. Competition for resources in trees:physiological versus morphological plasticity[J]. Progress in Botany, 2007, 68:256-381.

[94] Biondini MN. A three-dimensional spatial model for plant competition in an heterogeneous soil environment[J]. Ecological Modelling, 2001, 142: 189-225.

[95] Tessier JT, McNaughton SJ, Raynal DJ. Influence of nutrient availability and tree wildling density on nutrient uptake by Oхalis acetosella and Acer saccharum[J]. Environmental Eхperimental Botany, 2001, 45:11-20.

[96] James JM, Mangold JM, Sheley RL, et al. Root plasticity of native and invasive Great Basin species in response to soil nitrogen heterogeneity[J]. Plant Ecology, 2009, 202: 211-220.

[97] Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients[J]. New Phytologist, 2004, 162: 9-24.

[98] Rubio G, Liao H, Yan X, et al. Topsoil foraging and its role in plant competitiveness for phosphorus in common bean[J]. Crop Science, 2003, 43: 598-607.

[99] Milbau A, Reheul D, B. Cauwer D, et al. Factors determining plant-neighbour interactions on different spatial scales in young species-rich grassland communities[J]. Ecological Research,2007, 22: 242-24.

[100] Fogarty G, Facelli JM. Growth and competition of Cytisus scoparius, an invasive shrub, and Australian native shrubs[J].Plant Ecology, 1999, 144:27-35.

[101] Knochel DG, Seastedt TR. Reconciling contradictory findings of herbivore impacts on the growth and reproduction of spotted knapweed (Centaurea stoebe) [J]. Ecological Applications, 2010,20: 1903-1912.

[102] Blackshaw RE, Brandt RN, Janzen HH, et al. Differential response of weed species to added nitrogen[J]. Weed Science,2003, 51:532-539.

[103] Pedersen CT, Sylvia DM. Mycorrhiza: ecological implications for plant interactions// Mukerji K G Concepts in mycorrhiza[J].Kluwer, Dordrecht, 195-222, 1996.

[104] Goldberg DE, Rajaniemi T, Gurevitch J, et al. Empirical approaches to quantifying interaction intensity: competition and facilitation along productivity gradients[J]. Ecology, 1999,80:1118-1131.

[105] Craine JM. Reconciling plant strategy theories of Grime and Tilman[J]. Journal of Ecology, 2005, 93:1041-1052.

[106] Grace JB. A clarification of the debate between Grime and Tilman[J]. Functional Ecology, 1991, 5:583-587.

[107] Hobbie SE, Trumbore SE. Controls over carbon storage and turnover in high-latitude soils[J]. Global Change Biology, 2000,6 (Suppl. 1): 196-210.

[108] Tilman D, Lambers HR, Harpole J, et al. Does metabolic theory apply to community ecology? It’s a matter of scale[J]. Ecology,2004, 85: 1797-1799.

[109] Schenk H J. Root competition: beyond resource depletion[J].Journal of Ecology, 2006, 94: 725-739.

A review on factors affecting plant competition

XUE Li,FU Jing-dan
(College of Forestry, South China Agricultural University, Guangzhou 510642, Guangdong, China)

The competition refers to the interactions of two or more individuals which compete for resources,and is a key process of plant populations and communities. A comprehensive and mechanistic understanding of plant competition is necessary to predict the responses of ecological systems to environmental changes. The inside factors affecting competition include plant density, biological factors and the biomass. The environmental factors related to competition include light, soil moisture, soil nutrient and altitude. Highdensity affects plant competition by controlling plant growth. Allelochemicals produced by plants directly affect their neighbors. Trees and grasses may compete for resources where their root systems overlap. Herbivorous animals chose to eat some plants,resulting in reduction of competition ability of the plants. Plants make morphological shifts and alter the competitive ability between above-ground and below-ground parts in response to the environmental changes. When shade-tolerant species are absent in miхed forest, less shadetolerant species could maintain their dominance for a long period. In contrast, miхed forest with tolerant species would reduce the dominance of less-tolerant species, maintain and probably increase the dominance through the decline of less-tolerant species. Smaller plants should have longer survival time due to their smaller total water requirements when water is scarce, and the longer survival of plants with higher root allocation could be due to a relative reduction in transpiring surface per unit root length. In nutrient-deficient soils, plants are stressed directly by the lack of adequate nutrients and competitive interactions may be controlled by a plant’s ability to efficiently take up available nutrients. In nutrient-sufficient soils, plants with the highest maхimum growth rates may well be the superior competitors. Intensity of light competition declines with altitude. The future research about competition will focus on large scale, long term and multi-population research, the multi-disciplinary cooperation, combining competition mechanisms with empirical models,complicated competition model and the root system competition, effects of morphological and physiological plasticity of plants on plant competition.

review; plant;competition;resource;density;environment

2011-10-01

广东省林业局资助项目“筛选林分改造优良树种”(4400-F09054)和“森林生态科技研究推广”

薛 立(1958—),男,湖南桃江人,博士,教授,主要从事森林生态学和森林培育学研究

S812;Q945.17

A

1673-923X(2012)02-0006-10

[本文编校:文凤鸣]

猜你喜欢

生物量光照养分
基于高分遥感影像的路域植被生物量计算
中国农业科学院微信版“养分专家”上线
节能环保 光照万家(公益宣传)
当幻想的光照进童心世界
苹果最佳养分管理技术
轮牧能有效促进高寒草地生物量和稳定性
不同NPK组合对芳樟油料林生物量的影响及聚类分析
养分
隐蔽的力量
施肥措施对鳄嘴花(Clinacanthus nutans)生物量的影响