APP下载

新课程下如何做好初高中数学教学衔接

2011-12-29戚兴龙

考试周刊 2011年54期

  摘 要: 高一学生不适应高中数学,学生数学成绩出现了严重的两极分化,少数学生甚至对学习数学失去了信心。环境和心理的变化,教材难度的提高、课程内容的增加、教师教法的改变,导致学生出现数学学习困难。如何实现初中数学与高中数学的顺利衔接,使学生尽快适应高中数学学习呢?本文作者认为进行学习方法指导是不二法门。
  关键词: 新课程 高中数学 数学成绩 方法指导 教学衔接
  
  高中数学新课程模块多,且有相当部分模块在初中知识体系中未能很好铺垫。如何加强初高中数学教学的衔接,让学生尽快适应高中数学学习?我在实际教学中对此进行了探索,并取得了一定效果,愿与各位分享交流。
  一、高中数学成绩分化的原因
  1.初中数学相对容易,而高中数学内容多、难度大。
  首先,初中数学教材内容通俗具体,多为常量,题型少而简单;而高中数学内容抽象,多研究变量、字母,不仅注重计算,而且注重理论分析,直接加大了学习难度。
  其次,课堂内容也多,每节课容量大于初中数学。由于实行九年制义务教育和倡导全面提高学生素质,现行初中数学教材在内容上进行了较大幅度的压缩,对许多在高中经常要用到的知识,如:十字相乘法、根与系数的关系、立方和(差)公式等不作要求或要求较低。高中数学从知识内容上整体数量较初中剧增,高考中对学生的能力提出了更高的要求。如高一上学期必须完成必修1、必修2两本教材,其中必修1包括《集合与函数概念》、《基本初等函数(Ⅰ)》、《函数的应用》三章内容,必修2包括《空间几何体》、《点、直线、平面之间的位置关系》、《直线与方程》、《圆与方程》四章。而下学期还将完成必修3、必修4两本教材。这些都是高一学生数学成绩大幅度下降的客观原因。
  最后,由于近几年教材内容的调整,虽然初高中教材都降低了难度,但相比之下,初中难度降低的幅度大。而高中由于受高考的限制,教师都不敢降低难度,造成了高中数学实际难度没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中的教材内容的难度差距,反而加大了。
  2.高中数学教师教法的改变。
  随着教材难度的提高,课程内容的增加,在教学方式上,高中教师的教学方法也与初中不同。
  在初中,由于所学内容少,涉及题型简单,课时较充足。因此,教师有充足时间对重难点内容进行反复强调,对各类习题的解法进行举例示范,学生也有足够时间进行演练、巩固(包括到黑板上板书)。而到了高中,由于知识点剧增,教学教材内涵丰富,课堂容量大,进度自然加快,没有更多的时间来反复强调重难点内容,而课后安排的习题类型也不可能与课堂上所讲的配套。在教学过程中,同学们普遍反映数学课能听懂但作业不会做。不少学生说,平时自认为学得不错,但考试成绩就是上不去。在初、高中数学教师的课堂教学是不同的,初中教师重视直观、形象教学,老师每讲完一道例题后,都要布置相应的练习,学生到黑板上板演的机会相当多。为了提高整体成绩,初中教师可以把题型分类,让学生死记解题方法和步骤。在初三,重点题目反复做过多次。而高中教师在授课时强调数学思想和方法,注重举一反三,在严格的论证的推理上下工夫。又由于高中课程紧,教师如果像初中教师那样上课就可能完成不了教学任务。因此造成初、高中教师教学方法上的巨大差距,中间又缺乏过渡过程,致使高一新生普遍适应不了高中教师的教学方法。
  二、如何顺利完成初中数学与高中数学的衔接
  面对以上问题,有的学生感到困惑,有的学生开始畏惧,如何帮助他们尽快适应以上变化,将直接影响他们学习效率、学习成绩的提高。其实,针对高中学生的个性特点和认知结构,我认为可从以下几个方面来使他们适应高中数学的学习,顺利完成初中数学与高中数学的衔接。
  1.引导学生养成课前预习的习惯。
  高中课堂容量大,知识点多,有时一节课便要学习几个定理、公式,学生若不进行课前预习,便很难跟上教师的讲解,也难保证听课的针对性。事实上,学生做好课前预习,真正做到带着问题听讲,可以明显地提高教学效率,培养学生的自学能力,使学生能适应强度较大的高中数学学习。
  2.引导学生学会听课。
  学生在课堂上必须专心听讲,特别是教师对核心概念的讲解、典型例题的分析,同时要善于独立思考,归纳总结出解题的数学思想和方法,找出解题的一般规律和特殊规律,最后还应适当作些笔记或批注,以提高听课效率。
  3.引导学生养成及时复习、系统小结的习惯。
  高中数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化,归纳总结,将所学新知识融入有关的体系和网络中,以强化对核心概念、基本原理的理解和记忆,保持知识的完整性,变传统的被动学习为主动学习,不仅达到“学会”,而且实现“会学”。
  4.在数学教学中以突破学生的数学思维障碍作为最好的衔接。
  例如:高一年级学生刚进校时,我们都要复习一下二次函数的内容。而学生对二次函数中最大、最小值尤其是含参数的二次函数的最大、小值的求法普遍感到比较困难。为此我作了如下题型设计,对突破学生的这个难点问题有很大的帮助。在整个操作过程中,学生普遍(包括基础差的学生)热情高涨,思维始终保持活跃。
  设计如下:
  (1)求出下列函数在x∈[0,3]时的最大、最小值:
  ①y=(x-1)2+1,②y=(x+1)2+1,③y=(x-4)2+1.
  (2)求函数y=x2-2ax+a2+2,x∈[0,3]时的最小值.
  (3)求函数y=x2-2x+2,x∈[t,t+1]的最小值.
  上述设计层层递进,每做完一题,适时指出解决这类问题的要点,大大地调动了学生学习的积极性,提高了课堂效率。
  总之,如何做好初高中数学衔接,是有待于我们在今后的教学中不断创新和研究的课题。
  初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。但因为高中数学的难度加大,相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。在这个时候,如果我们老师能及时引导,做好初高中的衔接,孩子们的心中肯定就会充满阳光,勇于扬帆远航。
  注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文