八年级数学期末检测题
2011-12-29胡锦波
初中生之友·中旬刊 2011年7期
一、选择题
1.在式子,,,,中,分式的个数为()
A.2个B.3个C.4个D.5个
2.下列运算正确的是()
A.=-B.=
C.=x+yD.=
3.若A(a,b)、B(a-1,c)是函数y=-的图像上的两点,且a<0,则b与c的大小关系为()
A.b<cB.b>cC.b=cD.无法判断
4.如图1,已知点A是函数y=x的图像与
y=的图像在第一象限内的交点,点B在x轴负半轴上,且OA=OB,则△AOB的面积为()
A.2B.
C.2D.4
5.如图2,在三角形纸片ABC中,AC=6,∠A=30°,∠C=90°,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为()
A.1B.
C.2D.2
6.△ABC的三边长分别为a、b、c,下列条件:①∠A=∠B-∠C;②∠A∶∠B∶∠C=3∶4∶5;③a2=(b+c)(b-c);④a∶b∶c=5∶12∶13,其中能判断△ABC是直角三角形的个数有()
A.1个B.2个 C.3个D.4个
7.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行。不能判定为平行四边形的是()
A.① B.②C.③ D.④
8.如图3,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()
A.20°B.25°
C.30° D.35°
9.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,
75,80。下列关于对这组数据的描述错误的是()
A.众数是80B.平均数是80
C.中位数是75D.极差是15
10.某居民小区本月1日至6日每天的用水量如图所示,那么这6天的平均用水量是()
A.33吨B.32吨
C.31吨D.30吨
二、填空题
11.某班学生理化生实验操作测试的成绩如下表:
则这些学生成绩的众数为:_____________。
12.观察式子:,-,,-……根据你发现的规律可知,第8个式子为_____________。
13.已知梯形的中位线长10 cm,它被一条对角线分成两段,这两段的差为4 cm,则梯形的两底长分别为_____________。
14.如图5,直线y=-x+6与双曲线y=-(x<0)交于点A,与x轴交于点B,则OA2-OB2=_________。
三、解答题(共48分)
15.解方程:--1=0。
16.先化简,再求值:•-,其中a=。
17.如图6,已知一次函数y=k1x+b的图像与反比例函数y=的图像交于A(1,-3)、B(3,m)两点,连接OA、OB。
(1)求两个函数的解析式;
(2)求△OAB的面积。
18.小军八年级下学期的数学成绩如下表所示:
(1)计算小军下学期平时的平均成绩;
(2)如果学期总评成绩按扇形图所示的权重计算,问小军下学期的总评成绩是多少分?
19.如图7,以△ABC的三边为边,在BC的同侧作三个等边△ABD、△BEC、△ACF。
(1)判断四边形ADEF的形状,并证明你的结论;
(2)当△ABC满足什么条件时,四边形ADEF是菱形?满足什么条件时是矩形?
20.为预防流感,某校对教室喷洒药物进行消毒。已知喷洒药物时每立方米空气中的含药量y(毫克)与时间x(分钟)成正比,药物喷洒完后,y与x成反比例(如图8所示)。现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克。
(1)求喷洒药物时和喷洒完后,y关于x的函数关系式;
(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?
(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?
21.如图9,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=于点D,过D作两坐标轴的垂线DC、DE,连接OD。
(1)求证:AD平分∠CDE;
(2)求证:对任意的实数b(b≠0),AD•BD为定值。
一、选择题
1.B, 2.D, 3.B, 4.C, 5.D, 6.C, 7.C, 8.C 9.C, 10.B
二、填空题
11.16分(或16) 12.-13.6 cm,14 cm14.2
三、解答题
15. x=-
16.原式=-,值为-3
17.(1)y=x-4,y=- (2)S△OAB=4
18.(1)平时平均成绩为:=105(分)
(2)学期总评成绩为:105×10%+108×40%+112×50%=109.7(分)
19.(1)四边形ADEF为平行四边形,证明略。(2)AB=AC时为菱形,∠BAC=150°时为矩形。
20.(1)y=x(0<x≤10),y=。
(2)40分钟。
(3)将y=4代入y=x中,得x=5;将y=4代入y=中,得x=20。
因为20-5=15>10,
所以消毒有效。
五、综合题
21.(1)证明:由y=x+b得 A(-b,0),B(0,b),
所以∠DAC=∠OAB=45°。
又DC⊥x轴,DE⊥y轴,
所以∠ACD=∠CDE=90°。
则有∠ADC=45°,即AD平分∠CDE。
(2)由(1)知△ACD和△BDE均为等腰直角三角形,
所以AD=CD,BD=DE。
所以AD•BD=2CD•DE=2×2=4为定值。