高层框支剪力墙结构设计实例分析
2011-12-20吴涛
摘要:框支剪力墙结构体系是将框架结构和剪力墙结构相结合的产物,在工程界被广泛采用。本文结合工程实例,探讨了高层框支剪力墙结构的设计方法。
关键词:高层建筑;结构设计;框支剪力墙;抗震设计
在当今寸土寸金的大环境下,为了适应社会对建筑功能多样化的要求,结构往往必须反常规地进行布置:即上部布置小空间;下部布置大空间,因此,建筑功能的要求与正常合理的结构布置产生了矛盾,结构转换层为解决这一矛盾应运而生。
转换层可改变轴线和柱网布置:亦可将框架结构转换成剪力墙结构,从而为建筑提供下层室内大空间和宽广的出入口。
转换层依其上下不通的平面布置可采用梁式、桁架式、箱型或厚板式转换层,其中,梁式转换层是目前高层建筑中实现垂直转换最常用的结构形式,梁式转换层具有传力直接,明确,传力途径清楚,受力性能好,工作可靠,构造简单,施工方便的优点,结构设计相对比较简单,而且造价也较节省。
1 、工程概况
该工程为某小区高层建筑中的一座商住综合楼。1、2 层用于商业,,转换层设在2层顶;3~30层为住宅,用于商业;地下1层为地下室,用于车库、水池和设备间。室外地面至主要屋面的高度为90.5m,至局部电梯机房女儿墙顶的高度为99.2m。标准层和转换层结构平面分别如图1和图2 所示。
图1 标准层结构平面
图2转换层结构平面
典型的板式住宅,南北通透,进深小,立面宽。由于建筑平面狭长,并且西端局部轴线转向,如图设一道防震缝将建筑物分为东、西两个结构单元。东座为长矩形平面,西座平面严重不对称,高宽比都很大。本工程为丙类建筑,抗震设防烈度为 6 度,基本地震加速度为 0.05g,建筑场地类别为 II 类, 设计地震分组为第一组, 基本风压为0.35kN/m2,地面粗糙度为C 类。
2 、结构布置与计算调整
住宅建筑平面形状复杂,高宽比的计算方法没有明确的标准。如果按所考虑方向的最小投影宽度计算高宽比:东座达90.2∶9.3=9.7,西座达87.3∶9.3=9.4,远远超过了规范限值6。本工程平面中, 局部突出部分占有相当大的面积, 并且其外伸长宽比4.55∶7.2=0.63比较小, 如果按包括突出部分的最大投影宽度计算高宽比,东座为90.2∶17.2=5.2,西座为87.3∶17.2=5.1。
为了得到理想的户型布置, 尽量不加大平面南北向最小宽度,而是通过剪力墙的平面布置来控制结构的侧向刚度和承载能力,保证稳定,防止倾覆,并实现良好的技术经济指标。结构布置中增加Y 轴方向剪力墙的数量和长度,南北立面上局部突出的部分加强了剪力墙布置,尤其注意保证了足够的y轴方向落地剪力墙。
弹性计算显示:风荷载作用下,东座Y向最大层间位移角为1/1184, 西座为 1/1250;多遇地震作用下东座Y向最大层间位移角为1/2219,西座为 1/2420;东座Y向刚重比为3.4,西座为3.83,均远大于1.4,满足规范的整体稳定要求;剪力墙、框支柱等抗侧力构件配筋量正常,多数是构造配筋,无异常超限情况;基础底面也未出现零应力区。
计算中发现,东座由于平面狭长,扭转为主的第一自振周期与平动为主的第一自振周期之比偏大。延长周边剪力墙,同时缩短内部剪力墙,使抗侧力构件的平面布置更加合理有效。调整剪力墙布置时,同时关注刚心的移动, 避免无意间增大了偏心率而收到降低耦联周期比的效果。
西座由于严重不对称,楼层扭转位移比很大。通过调整剪力墙布置,尽可能减小楼层刚度中心与质量中心之间的偏心。关于多高层结构刚心的定义存在争议,现代空间结构计算方法并不需要确定刚心的位置,但刚心仍是概念设计的有用工具。SATWE 软件把每一楼层当作单层结构计算出楼层刚心,PMSAP 软件按照某种方式考虑所计算楼层与整体结构的关系而得出楼层刚心。参考软件计算的刚心和质心位置,调整平面布置。
东座平面规则,框支柱距比较大,而且由于商场建筑布局的需要以及保证结构Y向刚度和控制落地墙间距的考虑,Y向落地剪力墙较多,X向落地墙较少,使得X向转换层附近竖向刚度突变比较明显。框支框架截面和落地墙厚已无法加大, 主要通过适当缩短上部住宅剪力墙,加宽洞口,并利用裙房的侧向刚度,使转换层上、下结构等效侧向刚度比满足规范要求。
3 、分析模型与设计计算
本工程为带转换层的复杂高层建筑结构,设计时采用 SATWE和PMSAP两种不同力学模型的三维空间分析软件进行整体计算。
在联肢剪力墙中, 连梁是一种对结构整体刚度很敏感的构件,用壳元建模分析更准确。但是当连梁跨高比比较大时,对采用单元结点协调的SATWE会带来与连梁相连处墙肢单元划分困难的问题。鉴于目前的设计软件不能人工干预单元的划分,当连梁跨高比不小于5时用杆元建模,小于5时,用壳元建模。
本工程楼盖整体性较好,无狭长楼板或局部大洞口,可以采用刚性楼板计算以减少自由度数。转换层楼板起到传递分配不落地墙水平剪力的作用,另外在框支剪力墙中需考虑转换梁的轴向拉力,水平转换和竖向转换都要求考虑楼板平面内变形,应采用弹性板计算。为了使转换梁转换竖向荷载的传力路线清楚,不考虑转换层楼板的平面外刚度,按弹性膜计算,偏于安全。考虑到水平荷载的转换也不是全部在转换层完成的,其上相邻的标准层楼板也定义为弹性膜。
裙房屋面与转换层楼面在同一标高, 裙房框架柱的内力也会受到水平荷载转换的影响, 故将裙房屋面板与转换层楼面板一起定义为弹性膜。但在计算扭转位移比时,为了反映结构的整体扭转,全楼强制采用刚性楼板假定。
PMSAP中梁、柱不能偏心建模,当转换梁与其上剪力墙之间存在偏心时, 辅助建立若干与转换梁轴线垂直的分布足够密的小段刚性梁,以传递剪力墙和转换梁之间的荷载并协调变形,准确反映框支剪力墙的协同工作。
在结构整体计算中,考虑双向地震作用和偶然偏心,但二者不叠加。转换层及其附近的弹性板使整体结构的独立质量总数和固有振型总数大幅增长,振型复杂。
为了使复杂高层建筑结构的地震反应谱分析达到足够的精度,保证足够大的各地震作用方向有效质量系数,在振型分解反应谱计算中取前30阶振型。
由于在转换层附近采用了弹性板建模, 使用总刚计算方法直接形成结构的总刚度矩阵和总质量矩阵进行地震反应分析。西座中因轴线转向有部分斜交构件, 增加计算45°和135°方向水平地震作用。在振型分解反应谱法计算后检查楼层剪重比,转换层薄弱层处有足够的设计地震剪力。
两种设计软件的各项计算结果比较接近, 表明分析模型和方法合理,计算结果可靠,满足了规范各项要求。主要计算结果示于表1~表4。
表1 东座自振周期计算结果
注:表中最大位移比和最大层间位移比只计塔部分,不含底部裙房和突出屋面的电梯机房。
4 弹性时程分析补充计算
用直接动力法与加速度反应谱法的计算结果作比较, 以准确了解复杂高层结构在多遇地震下的响应。采用SATWE进行弹性时程分析,选用场地特征周期为 0.35s,加速度谱和规范设计谱形状比较匹配2 条天然波MT.DIABLO,SANFERNANDO和1条人工波USER1作为输入, 峰值加速度按照 6 度多遇地震设防水准调整为18cm/s2。由于振型分解反应谱法计算基底剪力时仅考虑单向地震作用, 为了与之比较,在弹性时程分析中也只输入主分量加速度时程。
东座和西座结构在 Y 向地震波作用下的最大楼层剪力响应分别示于图 3 和图 4。各条时程曲线计算所得的结构底部剪力与振型分解反应谱法求得的底部剪力相比符合规范要求。取各条波反应的平均值作为弹性时程分析的结果,小于加速度谱法的计算结果。弹性时程分析也反映出楼层剪力在转换层附近的突变现象。
图3 东座Y 向最大楼层剪力曲线
图4 西座Y 向最大楼层剪力曲线
5 结束语
高层建筑的造型和功能日趋多样化。超限复杂高层结构设计尤其需要重视抗震概念设计,在总体布局中融入三水准抗震设防思想,合理建立分析计算模型,正确运用设计软件,透彻理解规范条文的含义和背景,在现有认识水平的基础上设计出安全可靠经济适用的结构。
参考文献
【1】JGJ 3-2002,高层建筑混凝土结构技术规程条文说明[S].
【2】JGJ 3-2002,高层建筑混凝土结构技术规程[s].
【3】徐培福,黄吉锋,韦承基.高层建筑结构的扭转反应控制[J].土木工程学报,2006,39(7):1-8.
【4】蔡健,潘东辉,黄炎生.高层建筑结构扭转振动效应控制研究[J].工程力学,2007,24(7):116—121.
【5】吴晓云,陈森,魏琏.论地震作用下多层平扭耦联建筑的刚心[J].地震工程与工程振动,1988,8(4):33-44.
作者簡介:吴涛(1978-), 男,江西省宁都县人, 中级工程师,学士,身份证:362131197809032919,现供职于深圳市新城市规划建筑设计有限公司, 研究方向:结构工程。
注:文章内所有公式及图表请以PDF形式查看。