APP下载

抗衰老功率训练研究进展

2011-08-15唐玉成吴卅

中国运动医学杂志 2011年5期
关键词:力量功率负荷

唐玉成 吴卅

1 深圳大学师范学院体育系(广东 深圳 518060)

2 北京体育大学研究生院

人口老龄化是我国未来半个世纪所面临的重大问题。衰老往往导致老年人日常活动能力如爬楼梯、步行、起立、搬运重物等衰退或丧失。功率训练作为一种新兴及重要的抗衰老运动手段,在国外越来越受到重视。功率等于力量和速度的乘积,表现为肌肉快速用力的能力,其单位为瓦(W)。功率训练作为一种较新的老年人抗阻运动方式,与传统力量训练相比,功率训练要求用最快速度完成动作,在提高肌肉功率和日常活动能力方面的潜力更大。我国目前专门针对发展老年人骨骼肌质量、力量、功率以及日常活动能力的相关研究较少。为了促进我国抗衰老运动的相关研究,本文综述了国外老年人功率训练成果,着重阐述了老年人功率训练的研究历程,功率训练与力量训练的效果比较,功率训练的安全性和设计方案,以及未来研究需要解决的主要问题。

1 衰老骨骼肌的质量、力量、速度与功率

骨骼肌是人体最先衰老的组织之一。美国运动医学学会(ACSM)认为[1],肌肉从30岁开始衰老,横切面积和密度减小。40岁时肌肉质量丢失显著,丢失速率约为每年0.5~1%[2]。50岁以后,肌肉质量的丢失率为每年1~2%[3]。肌肉质量丢失不仅与衰老有关,废用性萎缩也是重要原因[4,5]。50岁至70岁之间,肌肉力量下降的速率约为每10年15%;70岁以后,还要增加[6,7]。力量下降在50岁之前并不明显,但肌肉功率下降的初始时间却相对较早,多始于30~40岁[8],速率也较高,每年下降3%,而力量下降速率只有1~2%[9]。60岁以后,肌肉力量的下降速率为每年1.4~2.5%,而肌肉功率的下降速率为 3~5%[10,11]。

衰老骨骼肌的力量和收缩速度下降,主要是因为II型肌纤维减少,尤其是IIB型肌纤维减少[12],运动神经元的募集和冲动频率减少[13,14],以及肌肉非收缩成份增加和协调性下降[15]。从青年到老年,人体的最大无氧功率每10年下降8.3%,其中速度每10年下降4.3%[16]。速度丢失的主要原因是II型肌纤维的减少,II型肌纤维的收缩速度是I型肌纤维的2~4倍[17]。功率丢失速率通常高于力量或速度。例如,老年人经历50%的肌肉力量和速度丢失,其力量可保持原来的50%,但功率却只有原来的25%。

由于肌肉组织存在卫星细胞和肌源干细胞[18],在机械应力刺激下,老年人骨骼肌依然保持着壮大的能力,即使90多岁的老年人也不例外[19]。抗阻训练能增加老年人肌肉肌球蛋白重链异构体的基因表达及IIB型肌纤维的比例,但与年轻人不同,老年人Ⅰ型肌纤维肌球蛋白重链的基因表达也增加[20,21]。此外,力量或功率训练都能增加老年人的肌肉力量、肌肉横切面积、神经肌肉协调性,以及雄性激素及生长激素的分泌[22-27]。

2 老年人功率训练研究历程

1945年,Delorme首次对力量训练进行了研究[28]。1961年,Perkins等首次对老年人进行力量训练研究[29]。20世纪60年代至80年代,受有氧运动抗衰老热潮的影响,关于老年人力量训练的研究并不多,多数研究采用低强度力量训练,受试者多为男性,结果普遍认为力量训练不能增加老年人肌肉质量,只能引起神经的适应和改变[30]。20世纪80年代末,Frontera[31]和Fiatarone[32]的研究改变了这一观念。Fiatarone发现,即使是长期卧床的年龄偏大的老年人,通过短期力量训练后也能获得的肌肉质量增加(9%)。随后,有关老年人力量训练的研究出现几何增长。一些研究表明[33-38],大强度力量训练在增加老年人肌肉质量和力量方面的效果优于低强度力量训练,大强度力量训练的方案也被写入了ACSM的官方建议[39],70~85%1RM的负荷成为老年人力量训练中被广泛采用的强度。

上世纪90年代初,Bassey 等[40]进行了早期的老年人功率训练研究,发现伸膝肌群功率可以预测体弱老年人爬楼梯和坐姿站起能力。后来的研究[41]确认了这一结论,并认为伸膝肌群的功率比力量能更准确预测日常活动能力。早期研究[42-45]主要关注功率训练发展肌肉力量和功率的效果,以及功率对日常活动能力的预测功能。

2000年以后,一些研究开始关注功率训练对日常活动能力的直接影响,以及功率训练与力量训练在提高日常活动能力上的效果比较。Earles的研究最早,出于安全考虑,Earles对受试者进行了筛选,只留下功能测试成绩较好的老年人,导致训练前后的日常活动能力变化无显著性差异[46]。后续研究吸取了相关教训,接纳了日常功能受损和体弱的老人,或至少没有排除这部分老人。

2004年以前,通常使用传统力量训练采用的器械和动作进行功率训练。2004年,以Bean为首的哈佛医学院团队突破了这一限制,设计了10种模拟日常活动的功率训练动作[47]。2007年,Manini也设计出5种日常功能性功率训练动作,并建立了这些动作的训练晋级模式[48]。近来,迈阿密大学的Signorile等提出用日常活动能力测试[49,50],如爬斜坡、30秒坐凳起立替代传统的器械功率测试,并证明这些测试的成绩能较好预测身体局部的最大功率。总体看来,功率训练在动作设计上有从突破传统器械训练模式向不断模拟和接近日常活动动作的趋势,以期能将功率训练成果更好地转换为日常活动能力,弥补传统力量训练和功率训练在提高日常活动能力上的低效问题[51]。老年人功率训练研究也从注重发展功率和速度向注重发展和全面提高日常活动能力转移。

3 功率训练与传统力量训练比较

3.1 发展日常活动能力方面

一些研究认为[52-54],力量训练和功率训练在提高老年人力量方面的差别不大,但功率训练提高功率的效果明显好于力量训练。如Fielding等发现,16周的功率训练将老年人腿举动作的峰值功率提高了97%,而力量训练仅提高45%。Marsh等的研究也发现,在提高下肢功率的效果方面,功率训练比力量训练几乎高出1倍。日常活动能力表现为功率或速度,而不是纯粹的力量,日常活动对力量的要求也低于对速度和功率的要求[55-57]。

日常活动能力减弱是老年人面临的最大问题之一。老年人的基本活动能力如行走、爬楼梯等均逐年减弱[58]。日常活动能力是独立生活和人身安全的基础和保障,以行走为例,77%(n>5000)的老年人步速在0.77m/s及以下,80岁老人步速在1 m/s以上的不足8%,而要让老年人安全通过城市交通路口,步速需要保持在1.35 m/s以上[59,60]。

跌倒是老年人面临的重大问题。为重新站起,老年人需要用更大的身体前倾角度作为补偿[61],站起速度更慢,也更容易跌倒。功率比力量能更好地预测跌倒的几率[62],功率训练比力量训练能更有效地减少老年人跌倒的风险[63]。老年人的步态有所改变,表现为脚踝和膝关节的支撑时间减少,步长缩短,而足与地面接触的时间增加,姿态稳定性减弱[64]。而功率训练,尤其是低负荷高速度的功率训练,有助于改善身体稳定性[65]。Metter等的一项长达40年的研究表明,肌肉功率(而不是力量)与死亡率呈高度相关,快速运动(如快速站起、快速步行)次数的减少导致肌肉质量和功率丢失加剧,显著增加老年人的死亡率[66]。

在提高日常活动能力方面,功率训练效果或显著优于力量训练[67,68],或与力量训练差异不大[69-71]。从目前的研究来看[72-74],即使功率训练增加肌肉力量和质量的效果与力量训练近似,但与肌肉力量相比, 肌肉功率与日常活动能力的关系更密切。因此,在提高日常活动能力方面,功率训练比力量训练的潜力可能更大一些。仅有两项研究[46,75]认为,功率训练不能显著提高老年人的日常活动能力。但这两项研究的受试者在测试之前就表现出较高的日常活动能力,如能在4分钟内完成400米行走,步速在1.3 ~ 1.5 m/s之间等。

3.2 其它方面

除了能有效发展功率和日常活动能力外,与力量训练相比,功率训练还有一些额外的优势。Stenglel等[76]对老年绝经期妇女进行了功率训练和力量训练效果的对比,经过12个月的训练,力量训练组腰椎和骨盆骨密度显著下降,而功率训练组能够保持或有一定提高(P > 0.05 )。Sayers等[77]的研究发现,与80%1RM的力量训练相比,40%1RM功率训练带来的主观疲劳感更低,功率训练老人的自发训练频率和量也显著高于力量训练。传统力量训练的高要求可能对老年人的心理造成不利影响,导致其主动锻炼的行为减少。还有研究表明[78-80],训练的持续性与辛苦程度有关,快速运动能带来更多的愉悦感和轻松感,中等负荷的快速功率训练比高强度的力量训练更利于坚持。在美国只有10%的老年人主动进行力量训练[81],考虑到环境和文化的影响,在国内这一比例可能还要小。因此,对于老年人而言,选择便于坚持的训练方式尤为重要。

Henwood[75]对老年人分别采用递增强度功率训练(45%1RM、60%1RM、75%1RM)以及恒定强度力量训练(75%1RM),负荷量均为3组8次,发现两者提高力量和功率的效果相差不大,但在提高老年人生活质量满意度方面,功率训练的效果好于力量训练。Henwood认为功率训练可以用较小的负荷,获得与力量训练同样的训练效果。Katula的研究[82]也证实,功率训练在提高老年人自信心、日常活动的满意度、生活满意度三个方面均优于力量训练。

4 功率训练的安全性

老年人功率训练的安全性问题一直受到关注。传统力量训练要求老年人慢速完成动作,以减少损伤。虽然对老年人力量训练的研究较多,但力量训练本身的危险性并未明确,只显示骨骼肌损伤的几率高于心血管损伤[83]。在功率训练的研究中,也有报道因各种伤病退出的情况,如疝气、后背痛、骨性关节炎、肌肉疼痛、肌腱炎等[84],但这些损伤多为个例,多数研究没有报道副作用或者省略相关报道。甚至在身体虚弱及患有慢性疾病老人参与的研究中,也没有报道出现损伤[85]。

de Vos[86]重点关注了功率训练的安全问题,对112名受试老人进行了每周一次的健康调查,未发现心血管疾病,但有17人出现了20次损伤。其中16次发生在测试过程中,4次发生在80%1RM负荷的训练过程中,测试受伤率为0.34%,而训练受伤率为0.25%,表明功率训练受伤几率并不高,但所有损伤都出现在80%1RM及以上负荷的训练或测试过程中,值得注意。Hazell的研究则提示[87],加速过程中产生的末端惯性力是导致老年人受伤的重要原因,可通过改进器械减小末端惯性力来降低损伤几率。

5 功率训练设计

5.1 强度

随着年龄的增长,肌肉功率丢失可能更多与速度丢失有关,而不是力量[88]。力量和速度的关系提示[89-91],在功率恒定的情况下,负重越低,收缩速度越快;负重越高,则收缩速度越慢。当负荷阻力适中时,功率较大,从40%1RM负荷开始增加,到约70%1RM时达到最大。

对于年轻人,无论是重负荷、慢速,还是轻负荷、快速的训练方式都能有效发展肌肉功率[92]。对于老年人,ACSM认为[93],应采用40~60%1RM的中等负荷进行快速功率训练,组数为1~3组,可从固定器械练习逐渐过渡到自由力量练习。ACSM的上述观点由Kraemer等在2002年发表,当时老年人功率训练的研究成果并不多,对训练方案设计具体问题的认识还不够深入。

de Vos等[86]对比了三种不同负荷的功率训练(20%1RM、50%1RM、80%1RM),发现三者提高功率的效果相似(增幅为14 ~ 15%),但在发展力量与耐力方面,80%1RM负荷更好。Orr等[94]则认为,相对于50%1RM、80%1RM负荷的功率训练,20%1RM的负荷能更好地提高老年人的平衡能力。Cuoco等的研究表明[95],与1RM相比,腿部40%1RM以及70%1RM负荷的最大功率与老年人日常活动能力(爬楼梯、站起、步行)的相关度较高;而与70%1RM的负荷相比,40%1RM负荷的功率与日常活动能力的相关度更高。此外,Miszko也针对老年人功率训练的最佳负荷和收缩速度进行了分析[96]。但这些研究并未对最佳训练方案达成一致,也没有阐明某项训练方案是否对发展某种特定的日常活动能力更有效。

Clemencon等发现[97],老年人的日常活动能力可以用肌肉功率和最大速度进行预测,不同的日常活动(6 km走、爬楼梯、坐姿站起)与功率和速度的关系不同。Signorile也认为[98],不同部位的功率训练应有不同的速度要求,才能让功率训练成果最优化。Harris等认为[99],大负荷功率训练有利于提高对力量要求较高和对速度要求较低的日常活动,如爬楼梯、坐姿站起;小负荷功率训练有利于提高对力量要求较低和对速度要求较高的日常活动,如行走。如果这种推论能得到进一步证实,将增加功率训练设计的针对性和有效性。

5.2 预适应和次数

研究认为[100,101],在老年人进行功率训练前,应先进行两周左右的力量训练,目的是为了掌握技巧和建立自信。虽然多数研究使用的重复次数为6~10次,但Baker的研究认为[102],最大功率通常出现在第2次或第3次动作,可以保持到第5次动作,从第6次开始显著下降,建议酌情减少动作次数。每次动作的向心收缩阶段,速度应尽量快,而离心收缩阶段速度应较慢,以最大程度地提高功率。

5.3 形式

多数研究采用器械或者自由力量的形式发展功率,其它形式的功率训练还不多,主要包括负重服、气动训练器械及阻力带。穿上负重服可以直接进行各种日常活动,发展下肢功率的效果好于传统力量训练,但负重服通常负荷较小,且不便增加负荷,对体弱或功能丧失的老年人比较适用[103]。气动训练器械用气压代替负重作为阻力,能减少加速时的惯性作用力,安全系数高,还可省去调整负荷的时间,能有效增加老年人的肌肉力量、功率和日常功能[104,105],并逐渐开始普及。但受试者通常需要固定身体,且固定运动轨迹,不利于有效发展平衡和协调能力。Hruda等首次将阻力带应用于老年人功率训练[106],发现其能显著增强老年人30秒坐姿站起、6分钟行走等能力。阻力带便于进行多关节运动,还可结合使用哑铃,便于调节运动强度,而且随着阻力带长度的变化,阻力也会变化,可以减少末端惯性力,防止拉伤。Webber等的最新研究表明[107],阻力带功率训练比传统功率训练能更好地提高日常活动能力。

6 小结和展望

尽管越来越多的研究证实,发展老年人肌肉功率和速度能带来诸多益处,但在为老年人选择运动处方时,忽视功率训练仍比较普遍。一些日常活动能力更依赖于肌肉功率而不是力量,作为一种提高日常活动能力的手段,功率训练不仅可以应用于健康的老年人,而且已成功应用于体弱及机能受损的老年人,研究前景广阔。未来的功率训练应重点关注几个问题:

(1)力量训练和功率训练的效果比较。将功率训练和力量训练进行对比分析,并同时进行三项指标测试(力量、功率和日常活动能力)的研究并不多,一共才9项,且大多样本量少于20,女性受试者多于男性[108]。因此,在提高日常活动能力方面,功率训练是否优于力量训练,目前还不能做出最终判断。此外,多数研究提供了实验室条件下的步速、坐姿起立和爬楼梯等数据,在实验室外进行的测试并不多[109],这似乎还不足以说明功率训练优于传统力量训练,有必要进行一些非实验室条件下的日常活动能力测试,测试难度应便于区分效果。后续研究还应注重增加样本量,平衡性别比例,系统监控损伤,对受试者退出的原因进行跟踪调查等。

(2)目前还缺乏不同身体状态老年人功率训练效果的对比研究,无法证明身体情况对功率训练效果的影响;多数研究注重下肢功率与日常活动能力的关系,专门针对上肢的研究较少。而上肢功率对于一些日常活动如搬运、举起、拖拽重物等较为重要,对下肢功能也会产生一定影响。

(3)提高日常活动能力的最佳负荷及最佳动作。不同日常活动对肌肉速度和力量的要求不一致,对最佳负荷的要求也会有所差别。由于目前研究数量较少,不同动作、不同负荷的功率训练与不同日常活动能力之间的关系如何还有待进一步研究。功率训练提高肌肉力量和功率的幅度通常大于提高日常活动能力的幅度,后续研究还需要创新训练动作,力争减少这种幅度差。一些研究设计了模拟日常活动能力的功率训练动作[110-113],认为模拟日常活动的动作能更有效地将功率训练成果转化成日常活动能力,但目前还缺少这些动作优于传统功率训练动作的对比研究。

(4)不同于年轻人,一些老年人常患有各种慢性疾病。目前,将功率训练应用于慢性疾病老年人的研究还不多,疾病种类也仅限于骨性关节炎等少数疾病[114]。慢性疾病通常导致老年人日常功能丧失或残疾[115],对患有慢性疾病的老年人,可否用功率训练替代传统力量训练进行康复,以获得更好的效果,也是值得关注的问题。

[1]Mazzeo RS,Cavanagh P,Evan WJ,et al. ACSM position stand: Exercise and physical activity for older adults. Med Sci Sport Exerc,1998,30(6):992-1008.

[2]Janssen I,Heymsfield SB,Wang ZM,et al. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol,2000,89(1):81-88.

[3]Marcell TJ. Sarcopenia : Causes,consequences,and preventions. J Gerontol,2003,58(10):911-916.

[4]Roubenoff R. Sarcopenia:Effects on body composition and function. J Gerontol,2003,58(11):1012-1017.

[5]Williams GN,Higgins MJ,Lewek MD. Aging Skeletal muscle: physiologic changes and the effects of training.Phys Ther,2002,82(1):62-68.

[6]Rogers MA,Evans WJ. Changes in skeletal muscle with aging:Effects of exercise training. Exerc Sports Sci Rev,1993,21(1):65-102.

[7]Aniansson A,Grimby G,Hedberg M. Compensatory muscle fiber hypertrophy in elderly men. J Appl Physiol,1992,73(3):812-816.

[8]Metter EJ,Conwit R,Tobin J,et al. Age-associated loss of power and strength in the upper extremities in women and men. J Gerontol,1997,52(2):267-276.

[9]Petrella JK,Kim J,Tuggle SC,et al. Age differences in knee extension power,contractile velocity,and fatigability. J Appl Physiol,2005,98(1):211-220.

[10]Barry B,Carson R. The consequences of resistance training for movement control in older adults. J Gerontol,2004,59(7):730-754.

[11]Izquierdo M,Gorostiaga E,Garrues M,et al. Maximal strength and power characteristics in isometric and dynamic actions of the upper and lower extremities in middle-aged and older men. Acta Physiol Scand,1999,167(1):57-68.

[12]Korhonen MT,Cristea A,Ale´n M,et al. Aging,muscle fiber type,and contractile function in sprinttrained athletes. J Appl Physiol,2006,101(3):906-917.

[13]Barry BK,Carson RG. The consequences of resistance training for movement control in older adults. J Gerontol,2004,59(7):730-754.

[14]MacAluso A,Nommo MA,Foster JE,et al. Contractile muscle volume and agonist-antagonist coactivation account for differences in torque between younger and older women. Muscle Nerve,2002,25(6):858-863.

[15]Connelly DM,Rice CL,Roos MR,et al. Motor unit firing rates and contractile properties in tibialis anterior of young and old men. J Appl Physiol,1999,87(2):843-852.

[16]Bonnefoy M,Kostka T,Arsac LM,et al. Peak anaerobic power in elderly men. Eur J Appl Physiol Occup Physiol,1998,77(1-2):182-188.

[17]Krivickas LS,Suh D,Wilkins J,et al. Age-and gender-related differences in maximum shortening velocity of skeletal muscle fibers. Am J Phys Med Rehabil,2001,80(6):447-455.

[18]Labarge MA,Blau HM. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell,2002,111(4):589-601.

[19]Frontera W,Hughes V,Fielding R,et al. Aging of skeletal muscle:a 12-yr longitudinal study. J Appl Physiol,2000,88(4):1321-1326.

[20]Lamas L,Aoki MS,Ugrinowitsch C,et al. Expression of genes related to muscle plasticity after strength and power training regimens. Scand J Med Sci Sports,2010,20(2):216-225.

[21]Bamman M,Hill V,Adams G,et al. Gender differences in resistance-training-induced myo fiber hypertrophy among older adults. J Gerontol,2003,58(2):108-116.

[22]Hakkinen K,Newton RU,Gordon SE,et al. Changes in muscle morphology,electromyographic activity,and force production characteristics during progressive strength training in young and older men. J Gerontol,1998,53(6):415-423.

[23]Hakkinen K,Kraemer WJ,Pakarinen A,et al. Effects of heavy resistance/power training on maximal strength,muscle morphology,and hormonal response patterns in 60-75-year-old men and women. Can J Appl Physiol,2002,27(3):213-231.

[24]Hakkinen K,Kraemer WJ,Newton RU,et al. Changes in electromyographic activity,muscle fiber and force production characteristics during heavy resistance/power strength training in middle-aged and older men and women. Acta Physiol Scand,2001,171(1):51-62.

[25]Hakkinen K,Alen M,Kallinen M,et al. Neuromuscular adaptation during prolonged strength training,detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol,2000,83(2):51-62.

[26]Newton RU,Hakkinen K,Hakkinen A,et al. Mixedmethods resistance training increases power and strength of young and older men. Med Sci Sports Exerc,2002,34(8):1367-1375.

[27]Izquierdo M,Hakkinen K,Ibanex J,et al. Effects of strength training on muscle power and serum hormones in middle-aged and older men. J Appl Physiol,2001,90(4):1497-1507.

[28]Delorme TL. Restoration of muscle power by heavyresistance exercises. J Bone Joint Surg,1945,27(6):645-667.

[29]Perkins LC,Kaiser HL.Resultsof short term isotonic and isometric exercise programs in persons over sixty.Phys Ther Rev,1961,41(6):633-635.

[30]Moritani T,DeVries HA. Potential for gross muscle hypertrophy in older men. J Gerontol,1980,35(5):672-682.

[31]Frontera WR,Meredith CN,O’Reilly KP,et al.Strength conditioning in older men: skeletal muscle hy-pertrophy and improved function. J Appl Physiol,1988,64(3):1038-1044.

[32]Fiatarone MA,Marks EC,Ryan ND,et al. High-intensity strength training in nonagenarians. J Am Med Assoc,1990,263(22):3029-3034.

[33]Beneka A,Malliou P,Fatouros I,et al. Resistance training effects on muscular strength of elderly are related to intensity and gender. Sci Med Sport,2005,8(3):274-283.

[34]Vincent KR,Braith BW. Resistance exercise and bone turnover in elderly men and women. Med Sci Sports Exer,2002,34(1):17-23.

[35]Pruitt LA,Taaffe DR,Marcus R. Effects of a one-year high-intensity versus low-intensity resistance training program on bone mineral density in older women. Bone Miner Res,1995,10(11):1788-1795.

[36]Fatouros IG,Kambas A,Katrabasas I,et al. Strength training and detraining effects on muscular strength,anaerobic power,and mobility of inactive older men are intensity dependent. Br J Sports Med,2005,39(10):776-780.

[37]Hortobagyi T,Tunnel D,Moody J,et al. Low or high intensity strength training partially restores impaired quadriceps force accuracy and steadiness in aged adults. J Gerontol,2001,56(1):B38-47.

[38]Harris C,DeBeliso MA,Spitzer-Gibson TA,et al. The effect of resistance-training intensity on strength-gain response in the older adult. Stre Cond Res,2004,18(4):833-838.

[39]American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. Baltimore MD:American College of Sports Medicine,2010:3-12.

[40]Bassey EJ,Fiatarone MA,O’neill EF,et al. Leg extensor power and functional performance in very old men and women. Clin Sci,1992,82(3):321-327.

[41]Bean JF,Kiely DK,Herman S,et al. The relationship between leg power and physical performance in mobilitylimited older people. J Am Geriatr Soc,2002,50(3):461-467.

[42]Skelton DA,Greig CA,Davies JM,et al. Strength,power and related functional ability of healthy people aged 65–89 years. Age Ageing,1994,23(5):371-377.

[43]Skelton DA,Young A,Greig CA,et al. Effects of resistance training on strength,power,and selected functional abilities of women aged 75 and older. J Am Geriatr Soc,1995,43(10):1081-1087.

[44]Earles DR,Judge JO,Gunnarsson OT. Power as a predictor of functional ability in community dwelling older persons. Med Sci Sports Exerc,1997,29(5):11-19.

[45]Hakinnen K,Kraemer W,Kallinen M,et al. Bilateral and unilateral neuromuscular function and muscle crosssectional area in middle-aged and elderly men and women. J Gerontol,1996,51(1):B21-29.

[46]Earles DR,Judge JO,Gunnarsson OT. Velocity training induces power-speci fic adaptations in highly functioning older adults. Arch Phys Med Rehabil,2000,82(7):872-878.

[47]Bean JF,Herman S,Kiely DK,et al. Increased velocity exercise specific to task( InVEST) training:a pilot study exploring effects on leg power,balance,and mobility in community-dwelling older women. J Am Geriatr Soc,2004,52(5):799-804.

[48]Manini T,Marko M,VanArnam T,et al. Efficacy of resistance and task-speci fic exercise in older adults who modify tasks of everyday life. J Gerontol,2007,62(6):616-623.

[49]Signorile JF,Sandler D,Kempner L,et al. The ramp power test: a power assessment during a functional task for older individuals. J Gerontol,2007,62(11):1266-1273.

[50]Smith WN,Del Rossi G,Adams JB,et al. Simple equations to predict concentric lower-body muscle power in older adults using the 30-second chair-rise test:a pilot study. Clin Interv Aging,2010,(5):173-180.

[51]John R,Justin WLK. Power training:Can it improve functional performance in older adults? A systematic review. Int J Exerc Sci,2009,2(2):131-151.

[52]Bottaro M,Machado SN,Nogueira W,et al. Effect of high versus low-velocity resistance training on muscular fitness and functional performance in older men. Eur J Appl Physiol,2007,99(3):257-264.

[53]Fielding RA,LeBrasseur NK,Cuoco A,et al. Highvelocity resistance training increases skeletal muscle peak power in older women. J Am Geriatr Soc,2002,50(4):655-662.

[54]Marsh AP,Miller ME,Rejeski WJ,et al. Lower extremity muscle function after strength or power training in older adults. J Aging Phys Act,2009,17(4):416-443.

[55]Hazell T,Kenno K,Jakobi J. Functional benefit of power training for older adults. J Aging Phys Act,2007,15(3):349-359.

[56]Keysore JJ,Jette AM. Have we oversold the benefit of late-life exercise? J Gerontol,2001,56(7):M412-423.

[57]Barry BK,Carson RG. The consequences of resistance training for movement control in older adults. J Gerontol,2004,59(7):730-754.

[58]Keogh JWL. Improving the functional ability of the elderly with resistance-training. Strength Cond J,2003,25(1):26-28.

[59]Guralnik JM,Simonsick EM,Ferrucci L,et al. A short physical performance battery assessing lower extremity function:associations with self-reported disability and prediction of mortality and nursing home admission. J Gerontol,1994,49(2):M85-94.

[60]Guralnik JM,Ferrucci L,Pieper CF,et al. Lower extremity function and subsequent disability:consistency across studies,predictive models,and value of gait speed alone compared with the short physicalperformance battery. J Gerontol,2000,55(4):M221-231.

[61]Janssen WGM,Bussmann HBJ,Stam HJ. Determinants of the sit-to-stand movement:A review. Phys Ther,2002,82(9):866-879.

[62]Skelton DA,Kennedy J,Rutherford OM. Explosive power and asymmetry in leg muscle function in frequent fallers and non-fallers aged over 65. Age Ageing,2002,31(2):119-125.

[63]Granacher U,Zahner L,Gollhofer A. Strength,power,and postural control in seniors: Considerations for functional adaptations and for fall prevention. Eur J Sport Sci,2008,8(6):325-340.

[64]Whipple R,Wolfston L,Amerman P. The relationship of ankle and knee weakness to falls in nursing home residents:an isokinetic study. J Am Geriatr Soc,1987,3(51):13-20.

[65]Orr R,De Vos NJ,Singh NA,et al. Power training improves balance in healthy older adults. J Gerontol,2006,61(1):78-85.

[66]Metter EJ,Schrager M,Ferrucci L,et al. Evaluation of movement speed and reaction time as predictors of allcause mortality in men. J Gerontol,2005,60(7):840-846.

[67]Miszko TA,Cress ME,Slade JM,et al. Effect of strength and power training on physical function in community-dwelling older adults. J Gerontol,2003,58(2):171-175.

[68]Bottaro M,Machado SN,Nogueira W,et al. Effect of high versus low-velocity resistance training on muscular fitness and functional performance in older men. Eur J Appl Physiol,2007,99(3):257-264.

[69]Bean JF,Kiely DK,LaRose S,et al. Increased velocity exercise specific to task training versus the national institute on aging’s strength training program :Changes in limb power and mobility. J Gerontol,2009,64(9):983-991.

[70]Sayers SP,Bean JF,Cuoco A,et al. Changes in function and disability after resistance training: Does velocity matter? A pilot study. Am J Phys Med Rehabil,2003,82(8):605-613.

[71]Seynnes O,Singh MA,Hue O,et al. Physiological and functional responses to low-moderate versus highintensity progressive resistance training in frail elders. J Gerontol,2004,59(5):503-509.

[72]Evans W. Exercise strategies should be designed to increase muscle power. J Gerontol,2000,55(6):309-310.

[73]Foldvari M,Clark M,Laviolette L,et al. Association of muscle power with functional status in communitydwelling elderly women. J Gerontol,2000,55(4):M192-199.

[74]Trappe S,Williamson D,Godard M,et al. Effect of resistance training on single muscle fiber contractile function in older men. J Appl Physiol,2000,89(1):143-152.

[75]Henwood TR,Taaffe DR. Detraining and retraining in older adults following long-term muscle power or muscle strength specific training. J Gerontol,2008,63(7):751-758.

[76]Stengel SV,Kemmler WR,Pintag C, et al. Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J Appl Physiol,2005,99(1):181-188.

[77]Sayers SP. High-speed power training:A novel approach to resistance training in older men and women. A brief review and pilot study. J Strength Cond Res,2007,21(2):518-526.

[78]Cox KL,Burke V,Gorely TJ,et al. Controlled comparison of retention and adherence in home- vs center-initiated exercise interventions in women ages 40-65 years:The S.W.E.A.T. Study. Prev Med,2003,36(1):17-29.

[79]Ekkekakis P,Hall EE,VanLanduyt LM,et al. Walking in( affective) circles:can short walks enhance affect? J Behav Med,2000,23(3):245-275.

[80]Hall EE,Ekkekakis P,Petruzzello SJ. The affective beneficence of vigorous exercise revisited. Br J Health Psychol,2002,7(1):47-66.

[81]Seguin R,Nelson ME. The bene fits of strength training for older adults. Am J Prev Med,2003,25(1):141-149.

[82]Katula JA,Rejeski WJ,Marsh AP. Enhancing quality of life in older adults: A comparison of muscular strength and power training. Health and Quality of Life Outcomes,2008,6(1):45-50.

[83]Latham NK,Bennett DA,Stretton CM,et al. Systematic review of progressive resistance strength training in older adults. J Gerontol,2004,59(1):48-61.

[84]Fielding RA,LeBrasseur NK,Cuoco A,et al. Highvelocity resistance trainingincreases skeletal muscle peak power in older women. J Am Geriatr Soc,2002,50(4):655-662.

[85]Seynnes O,Fiatarone A,Singh MA,et al. Physiological and functional responses to low-moderate versus highintensity progressive resistance training in frail elders. J Gerontol,2004,59(5):503-509.

[86]de Vos NJ,Singh NA,Ross DA,et al. Optimal load for increasing muscle power during explosive resistance training in older adults. J Gerontol,2005,60(5):638-647.

[87]Hazell T,Kenno K,Jakobi J. Functional benefit of power training for older adults. J Aging Phys Act,2007,15(3):349-359.

[88]DeVito GD,Bernardi M,Forte R,et al. Determinants of maximal instantaneous muscle power in women aged 50-75 years. Eur J Appl Physiol,1998,78(1):59-64.

[89]Cuoco A,Callahan DM,Sayers S,et al. Impact of muscle power and force on gait speed in disabled older men and women. J Gerontol,2004,59(11):1200-1206.

[90]Crewther B,Cronin J,Keogh J. Possible stimuli for strength and power adaptation:Acute mechanical responses. Sport Med,2005,35(11):967-989.

[91]Sayers SP,Guralnik JM,Thombs LA,et al. Effect of leg muscle contraction velocity on functional performance in older men and women. J Am Geriatr Soc,2005,53(3):467-471.

[92]Harris NK,Cronin J,Keogh J. Contraction force specificity and its relationship to functional performance. J Sport Sci,2007,25(2):201-212.

[93]Kraemer WJ,Adams K,Cafarelli E,et al. American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc,2002,34(2):364-380.

[94]Orr R,De Vos NJ,Singh NA,et al. Power training improves balance in healthy older adults. J Gerontol,2006,61(1):78-85.

[95]Cuoco A,Callahan D,Sayers S,et al. Impact of muscle power and force on gait speed in disabled older men and women. J Gerontol,2004,59(11):1200-1206.

[96]Miszko TA,Cress ME,Slade JM,et al. Effect of strength and power training on physical function in community-dwelling older adults. J Gerontol,2003,58(2):171-175.

[97]Clemencon M,Hautier CA,Rahmani A,et al. Potential role of optimal velocity as a qualitative factor of physical functional performance in women aged 72 to 96 years. Arch Phys Med Rehabil,2008,89(8):1594-1599.

[98]Signorile JF,Carmel MP,Czaja SJ,et al. Differential increases in average isokinetic power by speci fic muscle groups of older women due to variations in training and testing. J Gerontol,2002,57(10):M683-690.

[99]Harris NK,Cronin J,Keogh J. Contraction force specificity and its relationship to functional performance. J Sport Sci,2007,25(2):201-212.

[100]Avers D,Brown M. White paper:Strength training for the older adult. J Geriatr Phys Ther,2009,32(4):148-152,158.

[101]Lamas L,Aoki MS,Ugrinowitsch C,et al. Expres sion of genes related to muscle plasticity after strength and power training regimens. Scand J Med Sci Sports,2010,20(2):216-225.

[102]Baker DG,Newton RU. Change in power output across a high-repetition set of bench throws and jump squats in highly trained athletes. J Strength Cond Res,2007,21(4):1007-1011.

[103]Bean JF,Herman S,Kiely DK,et al. Increased velocity exercise speci fic to task( InVEST) training:a pilot study exploring effects on leg power,balance,and mobility in community-dwelling older women. J Am Geriatr Soc,2004,52(5):799-804.

[104]Orr R,De Vos NJ,Singh NA,et al. Power training improves balance in healthy older adults. J Gerontol,2006,61(1):78-85.

[105]Galvão DA,Nosaka K,Taaffe DR,et al. Resistance training and reduction of treatment side effects in prostate cancer patients. Med Sci Sports Exerc,2006,38(12):2045-2052.

[106]Hruda KV,Hicks AL,McCartney N. Training for muscle power in older adults: effects on functional abilities.Can J Appl Physiol,2003,28(2):178-189.

[107]Webber SC,Porter MM. Effects of ankle power training on movement time in mobility-impaired older women.Med Sci Sports Exerc,2010,42(7):1233-1240.

[108]John R,Justin WLK. Power Training: Can it Improve functional performance in older adults? A systematic review. Int J Exerc Sci,2009,2(2):131-151.

[109]Kongsgaard M,Backer V,Jorgensen K,et al. Heavy resistance training increases muscle size,strength and physical function in elderly male COPD-patients-a pilotstudy. Respir Med,2004,98(10):1000-1007.

[110]Barry B,Carson R. The consequences of resistance training for movement control in older adults. J Gerontol,2004,59(7):730-754.

[111]Harris NK,Cronin J,Keogh J. Contraction force specificity and its relationship to functional performance. J Sport Sci,2007,25(2):201-212.

[112]Keogh JWL. Improving the functional ability of the elderly with resistance-training. Strength Cond J,2003,25(1):26-28.

[113]de Vreede PL,Samson MM,van Meeteren NL,et al. Functional tasks exercise versus resistance exercise to improve daily function in older women:a feasibility study. Arch Phys Med Rehabil,2004,85(12):1952-1961.

[114]Weisser B,Richter H,Siewers M. Power training for patients with arterial hypertension. MMW Fortschr Med,2006,48(47):33-34.

[115]Guccione AA,Felson DT,Anderson JJ,et al. The ef fects of speci fic medical conditions on the functional limitations of elders in the Framingham Study. Am J Public Health,1994,84(3):351-358.

猜你喜欢

力量功率负荷
『功率』知识巩固
功与功率辨
追本溯源识功率
做功有快慢功率来表现
麦唛力量 (一)
孤独的力量
防止过负荷时距离保护误动新判据
主动降负荷才是正经事
负荷跟踪运行下反应堆一回路控制系统仿真与验证
怀疑一切的力量