APP下载

基于快速控制模型的混合型电力滤波器设计

2011-01-27吴玉辉刘惠康

电子设计工程 2011年2期
关键词:基波有源谐波

吴玉辉,刘惠康,陈 瑜

(武汉科技大学 信息科学与工程学院,湖北 武汉 430081)

目前,电力滤波器多采用数字化控制器实现,需要工程师有较高的软件编程能力。这样,滤波器设计周期的绝大部分时间将用于程序的编写以及优化上。考虑到数学模型的建立、算法的设计、离线调试,整个开发时间将非常长,成本将相应增加。

快速控制模型(Rapid Control Prototyping,RCP)的设计降低了设计周期,利用Simulink的图形化编程方法,不再需要进行复杂的程序编写:对于硬件工程师而言,改变模型参数就可以实现现场调试;对于理论研究人员而言,只需要考虑算法的快速性和实用性。

小波变换是一种分析非稳态电压和电流波形的快速而有效的方法。同FFT一样,小波变换将信号分解成频率分量。但是,离散小波变换(DWT)具有可变的频率分辨率,可以有效地解决负载突变所引起的电网电压闪变,而且能够实时跟踪间谐波。这是用来分析瞬态信号的一个有用特性。另外,小波分析不需要在整个频域范围内同时进行,将计算量集中在某一频率范围,减小了计算量,加快了分析速度。

本文基于Simulink软件对混合型有源电力滤波器[1-2](Hybrid Active Power Filter,HAPF)进行建模,利用Wavelet工具箱进行谐波分析并仿真,由MATLAB/Simulink/Embedded Target for TI C2000生成DSP代码,最终在TMS320F2812进行硬件实现。

1 快速控制模型(RCP)

RCP由两部分组成:计算机辅助设计软件Simulink和带有实时操作系统的专有硬件TMS320F2812,如图1所示。这种图形化编程方法取代了传统程序的编写,只要求工程师将注意力集中在功能和性能的优化上。本文提出的完整系统在仿真环境下进行。

图1 RCP的组成部分Fig.1 Architecture of RCP system

Embedded Target for TI C2000连接软件和硬件,Simulink工具箱提供本文所需的各种模型,为通用DSP上设计、仿真和实现嵌入式控制系统提供了集成平台。图2为设计流程。

图2 设计流程图Fig.2 Flow chart of design

利用Embedded Target,能够通过CCS(Code Composer Studio)产生高效的DSP代码,通过主机与DSP的接口将二者连接起来,就可以对DSP进行在线控制与优化。对于需要进行循环计算的复杂算法,RCP的快速执行功能将体现出极大的优越性。鉴于小波变换分析电力系统谐波的前景,以及建模的便利,本滤波器的有源部分控制算法利用小波变换来分析电网谐波。

2 小波分析

2.1 多分辨分解法

小波分析[3]的实现通常采用信号的多分辨分解法(Multiresolution Signal Decomposition,MSD),高通滤波器h和低通滤波器g分别通过小波函数来构成,如图3所示。

图3 小波分析的信号多分辨分解实现Fig.3 Implementation of the MSD

图3中的尺度1包含了从奈奎斯特频率到1/4采样频率的信息,尺度2包含了从1/4到1/8采样频率的信息,其他尺度包含的信息以此类推。小波的分解可以在任意尺度上终止,最后的平滑输出包含了所有剩余尺度的信息。但是,信号的分解层数不是任意的。长度为N的信号最多只能分解成log2N层。

2.2 小波变换

连续信号f(t)的小波变换定义为:

在离散小波变换中,给出了一些小波系数m和n,这些系数取决于伸缩因子和平移因子的次数。则离散小波系数可表示为:

虽然这一变换是时间上连续的,但小波形式是离散的。离散小波逆变换如下:

式(3):K=(A+B)/2,A 和 B 分别是 a和 b 的最大值(框架值)。

针对不同的问题,母小波的选择是不同的,并且母小波的选取对于得到的结构有较大影响。正交小波确保信号可以从其变换系数重构,具有对称滤波器系数的小波能够产生线性相移,由Daubechies推导出的小波组覆盖了正交小波领域。

2.3 控制算法的模型实现

Simulink工具箱提供了丰富的数学模型,从中选取C28x ADC、C28x PWM、F2812 eZdsp(若无该模块则无法生成DSP代码)、DWT和IDWT等模块,组成如图4所示的模型。

图4 包含小波变换的控制算法模型Fig.4 Control algorithm model contains wavelet

其中,在Wavelet子系统中集成了Environment Controller、Buffer、DWT和IDWT等模块对采样量化后的信号进行谐波分析,并产生补偿电压指令信号,继而通过PWM输出信号控制IGBT的关断,达到减少谐波和无功补偿的目的。仿真过程中,根据需要实时调节C28x PWM的占空比,以产生合适的输出波形。

3 混合型有源电力滤波器建模

3.1 混合型有源电力滤波器

对高压大容量谐波目前主要是采用LC谐振型无源滤波器 (Passive Power Filter,PPF),这些滤波器兼有无功补偿功能。尽管PPF具有初期投资小,运行效率高等优点,但PPF的滤波效果受电力系统阻抗的影响较大,且只能消除特定次数的谐波,对于谐波次数经常变化的负载滤波效果并不好。还可能与系统发生谐振,使LC滤波器过载甚至烧毁。有源电力滤波器(Active Power Filter,APF)相当于可变电阻,对基波阻抗为0,对谐波却呈现高阻态,APF虽能克服PPF存在的缺陷,但其安装容量受开关器件容量的限制[4-5]。

将无源滤波器和有源滤波器相结合构成混合型有源电力滤波器(HAPF),有源电力滤波器仅用来改善无源滤波器的滤波效果和抑制可能发生的谐振。这种方式中,有源电力滤波器不承受交流电源的基波电压,因此装置容量极大减少,通常只需要非线性负荷总容量的1/10左右,从而使有源电力滤波器能应用于大功率场合。

大型的供、配电站通常希望在滤除谐波的同时进行无功功率补偿,必然增加逆变器实现的技术难度和成本,从而限制了有源电力滤波器在大型变电站的应用。通过将逆变器输出电压经变压器耦合到无源滤波器的滤波支路的电感和电容两端,使有源电力滤波器既不承受基波电压也不承受基波电流,从而极大地减小了有源电力滤波器的容量[6]。

3.2 控制系统结构

以往有源电力滤波器的控制部分由工控机和单片机构成,工控机实现谐波检测、分析以及控制信号计算等,单片机则产生控制信号。限于单片机的处理速度,本文将信号采样、谐波分析以及PWM脉宽信号的产生均集成在TMS320F2812中完成,充分发挥32位DSP的计算效率。其控制电路结构如图5所示。

图5 控制电路结构图Fig.5 Diagram of the control circuit

选取A相电压过零点为初始值,将初始时刻后三相电流is用霍尔传感器测量后,将测量值送入DSP,经过高速A/D转换后得到采样值,然后将采样值进行离散小波变换,得到三相电流的基波值is1,分别将三相电流的采样值减去基波值,即得到有源电力滤波器需要补偿的三相谐波电流值ish,就可得到有源电力滤波器输出补偿电压的指令信号U=KIsh。再通过DSP的PWM模块控制逆变器,就能得到期望的电压波形。

3.3 混合型有源电力滤波器仿真模型

强大的Simulink工具箱包含了本文涉及的C2000 DSP系列的所有算法和外围设备,这将无疑为控制器的仿真设计提供便利的条件。混合型有源电力滤波器模型如图6所示。

图6 混合型有源电力滤波器模型Fig.6 Model of the HAPF

三相交流电压源35 kV,50 Hz,500 kVA模拟电网,通过变压器降压为400 V,50 Hz。有源滤波器的逆变器输出电压经变压器耦合到无源滤波器的滤波支路的电感和电容两端,以减小有源电力滤波器的容量,如图7所示。B1、B2分别为测量仪器,非线性负载由非对称整流器组成。

图7 有源滤波器模型Fig.7 Model of the APF

4 实验结果

直流总线电容:

其中,电容额定电压Vn=Vc/1.83,配电线路视在功率Sn=S*n/0.087,S*n为电容器在f=50 Hz的功率。

最小滤波电容:

式中,I*f(n)为n次谐波的电流标么值,U(*1)为电压基波标么值。

再根据公式(6)求得滤波电感:

ωs为某一确定次角频率。由上述公式,得出本仿真系统参数值如表1所示。

表1 系统参数值Tab.1 Coefficients of system

电流补偿前后波形如图8所示。从波形图可以得出,经过无源滤波和补偿电流的作用,得到了较为精确的三相正弦电流波形。

图8 补偿前后电流波形Fig.8 Simulated waveforms before and after current compensation

经过小波分析工具箱对谐波的计算、分析,通过混合有源电力滤波器后,畸变系数由22.50%降低到1.88%,符合IEEE-519-1992标准,如图9所示。

图9 滤波前后A相电压的频谱Fig.9 Spectrum of the A-phase voltage before and after filtering

5 结论

与传统电力滤波器比较,快速控制模型设计周期短,投资成本低,滤波效果明显。运行结果表明,利用DSP作为控制器建立的快速模型,能够精确的跟踪负载突变造成的电网电压闪变,从而进行谐波补偿。该设备可靠性高,抗干扰能力强,具有很好的经济效益,适合工程应用推广。

[1]LUO An, SHUAI Zhi-kang, ZHU Wen-ji.Development of hybrid active power filter based on the adaptive fuzzy dividing frequency control method[J].IEEE Transactions on Power Delivery, 2009, 24(1):424-432.

[2]刘观起,李庚银,周明.混合滤波器系统中无源滤波器的参数优化设计软件包[J].电力系统自动化,2000,24(11):56-59.LIU Guan-qi, LI Geng-yin, ZHOU Ming.A practical software package for parameter optimization of passive power filter in a hybrid power filter system[J].Automation of Electric Power Systems, 2000,24(11):56-59.

[3]Arrillaga J, Watson R N.Power System Harmonics[M].北京:中国电力出版社,2008.

[4]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,2004.

[5]罗安.电网谐波治理和无功补偿技术及装备[M].北京:中国电力出版社,2006.

[6]谭甜源,罗安,唐欣.大功率并联混合型有源电力滤波器的研制[J].中国电机工程学报,2004,24(3):41-45.TAN Tian-yuan, LUO An, TANG Xin.Development of high-capacity hybrid power filter [J].Proceedings of the CSEE, 2004, 24(3):41-45.

[7]SHIREEN W,LI Tao.A DSP-based active power filter for low voltage distribution systems [J].Electric Power Systems Research ,2008(78):1561-1567.

[8]Mathworks.Target Support Package TM 4 User’s Guide[EB/OL]. (2009-9)[2010-07].http://www.mathworks.de/help/pdf_doc/targetsupport/targetsupport_rn.pdf.

[9]Texas Instruments.TMS320C2812 Digital Signal Processors Data Manual[EB/OL].Texas Instruments.(2005-10)[2010-07].http://focus.ti.com.cn/cn/lit/ds/sprs174r/sprs174r.pdf.

[10]丁祖军,郑建勇,胡敏强.新型混合式电力滤波装置电流源控制策略[J].电力自动化设备, 2009, 29(3):74-77.DING Zu-jun, ZHENG Jian-yong, HU Min-qiang.Current source control strategy of hybrid power filter[J].Electric Power Automation Equipment, 2009, 29(3):74-77.

猜你喜欢

基波有源谐波
基于跟踪微分器的基波测量方法研究
基于移相控制的双有源桥变换器回流功率分析
电网谐波下PWM变换器的谐波电流抑制
基于多尺度形态学和Kalman滤波的基波分量提取
基于IEC62053-24静止式基波频率无功电能表标准对提高无功补偿效果的作用
利用基波相量变化率的快速选相方法
基于有源箝位的开关电源设计
虚拟谐波阻抗的并网逆变器谐波抑制方法
邱有源书法作品欣赏
基于ELM的电力系统谐波阻抗估计