APP下载

磁阻车辆检测器的低功耗设计

2011-01-22周晓庆蔡伯根上官伟

网络安全与数据管理 2011年1期
关键词:工作频率低功耗检测器

周晓庆 ,蔡伯根 ,2,王 剑 ,2,上官伟 ,2

(1.北京交通大学 电子信息工程学院,北京 100044;2.北京交通大学 轨道交通控制与安全国家重点实验室,北京 100044)

磁阻车辆检测器的低功耗设计

周晓庆1,蔡伯根1,2,王 剑1,2,上官伟1,2

(1.北京交通大学 电子信息工程学院,北京 100044;2.北京交通大学 轨道交通控制与安全国家重点实验室,北京 100044)

针对磁阻车辆检测器的功耗进行分析,采用优化休眠降耗法、降频降耗法两种低功耗方案,有效降低了检测器功率。

休眠降耗法;降频降耗法;磁阻车辆检测器;ZigBee

随着经济的发展,城市交通问题越来越严重,交通拥堵、交通事故频发是影响城市交通安全运行的主要因素。利用车辆检测技术,对车辆进行引导、疏导交通流,合理利用现有的道路资源控制交通流,可有效减少交通拥堵与交通事故的发生。

车辆检测器是检测交通流的主要部件。当车辆通过检测器时,车辆影响地磁场在检测器周围的磁力线分布。磁阻车辆检测器检测周围磁场变化,根据磁场变化检测车辆的信息。通过无线网络将数据传输至控制中心,通过车流量信息控制匝道口的开放与关闭,实现交通流的控制。车辆检测器埋于地下,车辆检测器的使用寿命问题是影响系统推广的主要因素,因此实现低功耗、长寿命是实现车辆检测器系统实际应用价值的必要条件。

为了延长电池供电系统工作寿命,常见的方法有增加电池容量和降低系统功耗[1]。要增加电池容量就意味着电池体积的增加,导致了传感器系统体积庞大、安装不便,不利于工程施工。因此,降低系统功耗是目前国际、国内研究的主要方向。常用的解决方案是利用定时唤醒机制,但唤醒的时间间隔不能过长,否则传感器不能及时响应,导致数据丢失的发生。因此不论有无读取信息需求,系统都要进行定时查询,造成能量消耗,另外定时唤醒需要时钟电路工作,这意味着MCU不能进入彻底休眠状态,导致定时唤醒机制不能达到最佳的节能效果[2]。本文针对这一问题,引入中断唤醒机制(休眠降耗法)、降频降耗方式为节能提供有效途径,并对这几种方法的可行性进行分析,同时利用低功耗的ZigBee网络技术实现数据传输,将系统功率消耗降至最低。ZigBee技术是一种低功耗、低复杂度、低数据传输速率、近距离、低成本的双向无线通信技术,适合于自动控制和远程控制领域,可以嵌入到各种设备中,利用ZigBee网络实现车辆检测数据传输,具有低成本、低功耗、网络结构简单等优点[3]。

1 系统功耗分析

1.1 系统组成

车辆检测器主要由传感器、信号调理、无线数据收发和中央控制器组成,系统结构如图1所示。

图1 车辆检测系统组成

车辆检测器埋于路面之下,以磁阻传感器感应车辆通过,产生微弱电压信号,电压信号经过处理后,转换为微控制器所需的中断信号,微处理器检测中断信号产生时刻t,与车辆通过传感器两个不同车轴产生中断信号的时间间隔Δt,根据两个参数可以计算出车辆轴距与车速等信息。

1.2 系统消耗功率分析

系统消耗的功率主要集中在信号调理、微控制器、ZigBee无线收发三部分,表1为影响系统功耗因素列表。

表1 影响系统功耗因素

1.2.1 信号调理

信号调理模块的功率消耗主要集中在放大器部分[4],放大器将传感器输出的微弱信号进行放大,根据信号的波动强度调节放大倍数,使得输出较为稳定。放大级数越多,工作频率越高;而工作电流越大,消耗功率越大。因此当一级放大可以满足放大要求时,采用一级放大方式,减少放大级数;选择低供电电压、低噪声、低输入偏置电流及低静态电流放大器可有效降低放大器功耗。

1.2.2 微控制器

微控制器为系统控制的核心,在不同工作频率时,消耗的功率不同。数字电路消耗功率主要包括动态功率与静态功率。静态为“0”或“1”的恒定状态,即当电路状态没有进行翻转(保持高电平或低电平)时,电路功耗属于静态功耗;而动态为“0”“1”的跳变状态,即电路翻转状态时,产生的功耗为动态功耗[5],数字电路总功耗 P如下式所示:

式中:VDD为工作电源电压;IDD为静态时由电源流向电路内部的电流;ITC为脉冲电流的时间平均值;f为工作频率;CL为电路输出端的负载电容。

由于工作频率f、工作电压VDD及CL对总功耗有较大的影响,因此,要降低电路的功耗,就需要降低工作频率、降低工作电压或尽可能使电路处于静态工作状态。

1.2.3 无线射频模块

数据传输部分是系统主要的能量消耗模块,数据传输速率、发射功率是影响无线传输模块的主要因素[6]。发射功率越大,数据传输波特率越高,模块消耗功率就越大。

2 低功耗设计

2.1 休眠降耗法

当系统空闲时,利用休眠功能,系统进入低功耗状态,中断的产生会使MCU退出低功耗模式。在具备中断情况下,MCU可以在整个过程中保持睡眠状态,只有产生中断时才被激活,处理器与无线射频在休眠状态时,功耗较低。以MSP430系列单片机与射频芯片CC2520为例,休眠功耗大约只有几微安[7]。

为了确定方案的可行性,对中断方式的两种极端检测方式进行分析:

(1)误差计算

①假设车辆最高时速为200 km/h(即55.6 m/s),车长为2 m,车辆通过传感器的时间t=2/55.6=36 ms。MCU与射频电路由睡眠状态唤醒需要的时间为0.2 ms,误差为0.2/36=0.56%,误差较低,如果在软件中加入校正,此误差在理论上为零。因此,车辆在高速运行状态下,中断启动方式可以实现。

②假设车速为 30 km/h(即 8.3 m/s),车辆通过传感器的时间t=2/8.3=241 ms,MCU与射频电路由睡眠状态唤醒需要的时间为0.2 ms,误差为0.2/241=0.09%。因此,误差很低可以忽略不计。

由以上分析可知,此方法误差很小,利用此方式对系统测量误差影响很小,方法可行。

(2)功耗分析

①假设车速200 km/h,车辆安全间距为 200 m,因此MCU和射频芯片间歇时间为200/55.6=3.6 s,而MCU与射频电路正常工作时间仅为t=2/55.6=36 ms,采用此方法可以将功率消耗减少到0.036/(3.6+0.036)=1%。降低功耗效果明显。

②假设车速为 30 km/h(即 8.3 m/s),安全距离为30 m,处理器与无线射频间歇时间为30/8.3=3.6 s,工作时间为t=2/8.3=241 ms,则功率消耗降低为0.241/(0.241+3.6)=6.3%。

由以上分析可知,利用MCU与射频芯片的休眠功能,可以很大程度上降低系统消耗功率,特别是在高速路段,可以将系统消耗功率降低为原来的1%,且即使车辆在低速运行过程中,功率也能降低为原来的1/16。

2.2 降频降耗法

MCU的耗能主要与其工作电压和工作频率有关[8]。MCU消耗功率P与工作电压和工作频率的关系可由如下公式得到:

其中C为系统的负载电容,V为电源电压,f为系统工作频率。由公式可以看出,电源电压的大小对系统功耗影响很大(以二次方的形式增加),其次是系统的工作频率和系统负载电容。一般系统的负载电容难以控制,所以,在不影响系统工作性能的情况下,选用较低的工作电压和工作频率可以有效地降低系统的功耗。

以MSP430单片机为例,MSP430系列单片机具有双时钟的特性,当系统工作频率为4 kHz、工作电压为3 V时,MCU消耗电流最大为32 μA,是系统频率为1 MHz时消耗功率(595 μA)的 1/18,功率降低明显。

可行性分析:传感器输出的数据波形需要利用波形宽度和波峰位置信息,如果不用A/D也可获得这两种信息,可以通过降低MCU主频来降低功耗。该方法的核心问题是寻找替代A/D的测量方式。

一般传感器检测到的信号波形类似于正弦波,波形通过一级高增益放大器放大波形进行波形转换,放大器输出峰值为3.3 V的类方波,系统省略一级波形转换电路,利用中断方式触发MCU。当放大器输出电压值达到1.8 V时,MCU将其判断为高电平,即可触发MCU产生中断,MCU利用测周期方法测量类方波的宽度,并计算出两个波峰间距。各个模块的信号波形如图2所示。

图2 各个模块的信号波形

假设车辆最高时速为 200 km/h(即 55.6 m/s),车身长为2 m,车辆通过传感器的时间为t=2/55.6=36 ms。MCU采用主频4 kHz运行,系统测量误差为1/4 000=0.25 ms,因此测量宽度为36 ms的波形误差为 0.25/36=0.7%。Δt大约为整个波形周期的1/20,而此部分可以利用软件补偿,理论上此误差为零。

2.3 软件低功耗设计

软件低功耗的设计目的就是充分利用应用所允许的最深睡眠状态,确保芯片尽可能长时间地保持在这一状态下。软件协议降低功耗主要从以下几个方面设计:(1)构建低功耗的无线传感器网络节点;(2)根据终端节点与接入点之间的距离,利用功率控制技术智能调节发射功率,以降低节点无线通信模块的能量消耗。软件流程图如图3所示。

图3 软件流程图

3 实验结果

车辆经过检测器,系统由休眠状态唤醒,读取当前时刻值,测量两次中断宽度,将信息数据发送至网络父节点。每次中断唤醒,系统向其父节点发送一帧包含车辆信息的数据包,因此,只有在唤醒状态下,系统功率消耗才会增加。通过实验,得到功耗降低明显,在10 min测量时间内,有休眠与无休眠电流曲线比较图如图4所示。

图4 有休眠和无休眠电流曲线比较图

降低系统功耗不但可以节约能源,而且可以减小硬件体积、延长硬件使用寿命,因此低功耗设计越来越受到人们的重视。低功耗在系统硬件设计及软件设计、器件的工艺设计等方面具有较明显的效果。本文分析了车辆检测器电路功耗特性,提出了休眠降耗法和降频降耗法,实验结果证明这两种方法降低系统功耗明显,即使在繁忙的工作时段也能降低70%以上的功耗,从而延长终端节点的使用寿命,使系统更具有实用性。

[1]TYCE R,CRITZ K,BOOK J W,et al.Low power control systemsformicrobialfuelcellbatteries[C].MTS/IEEE Oceans 2008 Conference and Exhibition,2008.

[2]卢春鹏.动态电压与频率调节在降低功耗中的作用[J].单片机与嵌入式系统应用,2007(5):12-17.

[3]Ran Peng,Sun Maoheng,Zou Youmin.ZigBee routing selection strategy based on data servicesand energybalanced ZigBee routing.services computing[C],APSCC′06.IEEE Asia-Pacific Conference,2006.

[4]张炜,韩进.嵌入式系统降低功耗的方法研究[J].单片机与嵌入式系统应用,2009(6):8-11.

[5]尚雅层.单片机系统中降低功耗的研究[J].机械与电子,2006(7):76-78.

[6]BENINI L,MICHELI G D.Networks on chip:A new paradigm for systems on chip design[R]. Design,Automation and Test in Europe Conference and Exhibition,2002.

[7]金允霖,赵春宇.应用Atmel低频唤醒收发芯片降低功耗的设计[J].电子技术应用,2007(5):55-57.

[8]GU H,ZHANG W,XU J.A low-power fat tree-based optical networkon-chip for multiprocessor system-on-chip[R],Design,Automation and Test in Europe Conference and Exhibition,2009.

Low power design of magnetic vehicle detector

Zhou Xiaoqing1,Cai Baigen1,2,Wang Jian1,2,Shangguan Wei1,2

(1.School of Electronics and Information Engineering,Beijing Jiaotong University,Beijing 100044,China;2.State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,Beijing 100044,China)

This paper analyzes the power consumption of the magnetic resistance vehicle detector,proposes two methods to reduce power consumption,which are dormancy reducing power and reducing the frequency to save the power.It reduces the endnode power consumption effectively by using the two methods.

dormancy reducing power;reducing frequency;magnetic vehicle detector;ZigBee

TP302

A

1674-7720(2011)01-0059-04

2010-05-20)

周晓庆,男,1986年生,硕士研究生,主要研究方向:交通信息工程及控制。

蔡伯根,男,1966年生,教授,主要研究方向:GNSS、GIS技术及其在交通中的应用研究、信息融合理论与技术、惯性导航与定位技术、智能控制。

王剑,男,1978年生,博士,讲师,主要研究方向:基于卫星定位技术在交通领域的应用研究。

猜你喜欢

工作频率低功耗检测器
一种高速低功耗比较器设计
一种宽带低功耗四合一接收机设计
基于二次否定剪切选择的入侵检测方法*
一种用于6LoWPAN的低功耗路由协议
低功耗技术在驾驶行为管理模块中的应用
车道微波车辆检测器的应用
一种柱状金属物质量检测器的研究
无线话筒的原理与使用
CPU故障的处理技巧
一种雾霾检测器的研究与设计