APP下载

双扩张Schrödinger-Virasoro代数的导子代数与自同构群

2011-01-12徐崇斌

关键词:子代数自同构信息科学

徐崇斌

(温州大学数学与信息科学学院,浙江温州 325035)

双扩张Schrödinger-Virasoro代数的导子代数与自同构群

徐崇斌

(温州大学数学与信息科学学院,浙江温州 325035)

双扩张Schrödinger-Virasoro代数是扩张Schrödinger-Virasoro代数的自然推广.充分讨论了双扩张Schrödinger-Virasoro代数的导子代数与自同构群,讨论结果适用于任意有限秩情形.

双扩张Schrödinger-Virasoro代数;导子代数;自同构群

1 预备知识

2 双扩张Schrödinger-Virasoro代数的导子代数

3 双扩张Schrödinger-Virasoro代数的自同构群

[1] Roger C, Unterberger J. The Schrödinger-Virasoro Lie group ane algebra:from geometry to representation thery [J]. Ann Henri Poincare, 2006, 7: 1477-1529.

[2] Unterberger J. On vertex algebra representations of the Schrödinger-Virasoro Lie algebra [J]. Nuclear Physics B, 2009, 823(3): 320-371.

[3] Gao S, Jiang C, Pei Y. Structure of the extended Schrödinger-Virasoro Lie algebra [J]. Alg Colluq, 2009, 16(4): 549-566.

[4] Tan S, Zhang X. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras [J]. J Alg, 2009, 322: 1379-1394.

[5] Farnsteiner R. Derivations and extensions of fnitely generated graded Lie algebras [J]. J Alg, 1988, 118(1): 34-45.

[6] Dokovic D Z, Zhao K. Derivations, Isomorphisms and second cohomology of generalized Witt algebras [J]. Tran Amer Math Soc, 1998, 350: 643-664.

Study on Derivation Algebra and Automorphism Group of Double Extended Schrödinger-Virasoro Algebra

XU Chongbin

(School of Mathematics and Information Science, Wenzhou University, Wenzhou, China 325035)

Double extended Schrödinger-Virasoro algebra is a natural generalization of extended Schrödinger-Virasoro algebra. In this paper, its derivation algebra and automorphism group were discussed. The achievement of the discussion is applicable to any finite rank.

Double Extended Schrödinger-Virasoro Algebra; Derivation Algebra; Automorphism Group

(编辑:王一芳)

O152.5

A

1674-3563(2011)06-0001-08

10.3875/j.issn.1674-3563.2011.06.001 本文的PDF文件可以从xuebao.wzu.edu.cn获得

2011-02-21

徐崇斌(1977- ),男,湖北黄梅人,讲师,硕士,研究方向:代数

猜你喜欢

子代数自同构信息科学
一类无限?ernikov p-群的自同构群
山西大同大学量子信息科学研究所简介
三元重要不等式的推广及应用
关于有限Abel p-群的自同构群
剩余有限Minimax可解群的4阶正则自同构
光电信息科学与工程专业模块化课程设计探究
基于文献类型矫正影响因子在信息科学与图书馆学期刊中的实证分析
四元数辛李代数MAD子代数的共轭性
Cartan型李代数W(n;m)的一类Borel子代数
有限秩的可解群的正则自同构