APP下载

论述热水供热系统的水力工况

2010-08-21高海旺

山西建筑 2010年30期
关键词:网路水压压差

高海旺

以热水作为热媒的供热系统称为热水供热系统。热水供热系统的热能利用率较高,输送时无效损失较小,散热设备不易腐蚀,使用周期长,并且散热设备表面温度较低,符合卫生要求。供热系统中流量、压力的分布状况称为系统的水力工况。供热系统供热质量的好坏,与系统的水力工况有着密切联系。普遍存在的冷热不均现象,主要原因就是系统水力工况失调所致。

在热水供热系统运行过程中,往往会由于设计、施工、改建、扩建和调节等原因,使网路中流量分配与热用户所需流量不相符合,各用户之间的流量要重新分配。热水供热系统中,各热用户的实际流量与要求流量之间的不一致性称为水力失调。水力失调造成各热用户的供热量不符合要求,使热用户或供热房间出现冷暖不均的热力失调现象。

一个集中供热系统,特别是一个大的集中供热系统,要实现稳定运行和均衡供热的基本条件是保证管网的水力工况平衡。目前我们一些系统中存在的工作压力不能满足正常工作需要,热力站不能获得需要的压差,部分用户不热,或者前端用户压差高,流量超过设计值,而末端压差不足,流量低于设计值,因而造成近端用户过热,远端用户不热,就是系统存在水力工况不平衡的问题。

造成系统水力工况不平衡的原因是多方面的,下面将常见的几种分析如下。

1 恒压点压力变动

水泵型号、管网阻力系数均未发生任何变化。系统流量未有变化,即无水力失调现象,因此水压图形状不变,只是随恒压点压力变化而沿纵坐标轴上下平移。如图1所示,图中虚线代表原水压图,实线代表变动后的水压图。此时流量无变化,但系统压力却变化很大,可能造成水压不能满足系统运行的基本要求。

2 循环泵出口阀门关小

如图2所示某一热水供热系统,当关小循环泵出口处阀门时,网路的总阻力数增大,总流量将减小(为了便于分析,假定网路循环泵的扬程不变)。由于热用户1~5的网路干管和用户分支管的阻力数没有改变,因而各热用户的流量分配的比例也不变,即都按统一比例减小。网路产生一致的等比失调。工况变化后网路的水压图如图3所示。图中虚线为正常工况下的水压图,实线代表循环泵出口阀门关小后的水压图。由于各管段的流量均减小,因而实线的水压曲线比原来的水压曲线变得平缓一些。各热用户的流量是按统一比例减小的。因而,各热用户的资用压差也是按相同的比例减小。

3 供热系统某一用户阀门开大

如图2所示某一热水供热系统,当某一用户如用户3阀门开大时,水压图的变化如图4所示,图中虚线代表正常工况下的水压图,实线代表工况变化后的水压图。当用户3阀门开大,则系统的总阻力数减少,系统总流量增加。Ⅰ管段动水压线变陡,1用户资用压头减小,流量也减小。Ⅱ干管流量增大,水压线变陡,2用户资用压头减小,流量减小。Ⅲ干管的流量增加最多,水压线斜率最陡,3用户流量增加。在3用户之后,4,5用户的流量将成比例地减小,Ⅳ,Ⅴ干管水压线变得平缓一些。根据分析,3用户阀门开大后,只有3用户流量增大,系统其他用户流量都将减小。3用户以后的各用户流量成一致的等比失调。3用户以前各用户流量成一致不等比失调,离3用户越近的用户,水力失调度越大。

如果3用户阀门关小,水利工况的变动有类似情况,不同的是3用户的流量减小,其他用户流量增加。其他用户的阀门的开大和关小,其变动水力工况也可通过类似的定性分析。

4 供热系统某一用户阀门关闭

如图2所示某一热水供热系统,当一用户如用户3阀门关闭时,水压图的变化如图5所示,图中虚线代表正常工况下的水压图,实线代表工况变化后的水压图。当3用户阀门关闭,则系统总阻力数增加,系统总流量减小。从热源到用户3之间的供水和回水管的水压线将变得平缓一些,如假定网路水泵的扬程不变,在用户3处供回水管之间的压差将会增加,用户3处的作用压差增加相当于用户4和5的总作用压差增加,因而使用户4,5的流量按统一比例增加,并使用户3以后的供水管和回水管的水压线变得陡一些。

在整个网路中,除用户3以外的所有热用户的作用压差和流量都会增加,出现一致失调。对于用户3后面的用户4和5,是一致等比失调。对于用户3前面的热用户1和2,是一致不等比失调。

5 供水干管上阀门关小

如图2所示某一热水供热系统,当干管上阀门如阀门c关小时,水压图的变化如图6所示,图中虚线代表正常工况下的水压图,实线代表工况变化后的水压图。当干管上阀门节流,则系统总阻力增加,系统总流量减小。供水和回水管的水压线将变得平缓一些,并且供水管水压线将在c点出现一个急剧的下降。

水力工况的这个变化,对于阀门c以后的用户3,4,5,相当于本身阻力数未变而总的作用压力却减小了,同时流量也按统一比例减小,出现一致等比失调。对于阀门c以前的用户1,2,可以看出用户流量将按不同的比例增加,它们的作用压差都有增加但比例不同,这些用户将出现一致不等比失调。

对于全部用户来说,流量有增有减,整个网路的水力工况就发生不一致失调。

6 热水网路未进行初调节

由于网路近端热用户的作用压差很大,在选择用户分支管路的管径时,又受到管道内热媒流速和管径规格的限制,其剩余作用压头在用户分支管路上难以全部消除。如网路未进行初调节,前端热用户的实际阻力数远小于设计规定值,网路总阻力数比设计的总阻力数小,网路的总流量增加。位于网路前端的热用户,其实际流量比规定流量大得多。网路干管前部的水压曲线,将变得较陡。而位于网路后部的热用户,其作用压头和流量将小于设计值。网路干管后部的水压曲线将变得平缓一些。由此可见,热水网路投入运行时,必须很好地进行初调节。其水压图的变化与图4类似。

以上简单介绍了几种热水供热系统水力工况变化对系统水力失调的影响。故掌握了热力网路各热用户的流量及其压力、压差的变化规律,就可以合理地进行网路的初调整和运行调节。说明水力工况分析对热水供热系统的运行管理具有很重要的指导作用。

[1]贺 平,孙 刚.供热工程[M].北京:中国建筑工业出版社,1993.

[2]石兆玉.供热系统运行调节与控制[M].北京:清华大学出版社,1994.

猜你喜欢

网路水压压差
基于数值模拟的引水隧洞衬砌结构破坏特征分析
无线自组织网路由算法研究
水压的杰作
在线处理脱丁烷塔压差高
基于桩网路堤简化分析方法的参数研究
水压预裂技术在低透气性煤层中的应用研究
分散药包千吨注水量的水压爆破
二维气体动力学中压差方程的特征分解和简单波
基于改进经济压差算法的主站AVC的研究
浅析滤纸透气度与初始压差的关系