APP下载

基于神经网络的电气设备故障诊断

2010-06-22朱晓琨

现代电子技术 2009年22期
关键词:电气设备故障诊断神经网络

朱晓琨

摘 要:电气设备的故障诊断对于提高生产效率具有十分重要的意义。然而,随着设备内部复杂度的不断提高,故障诊断也成为一项越来越难的工作。在分析神经网络结构及其学习算法的基础上,提出一种基于3层BP神经网络的电气故障诊断方法,并以发动机故障检测为实例,分析特征向量提取、神经网络训练等问题。通过输入样本训练及神经网络测试表明,神经网络在故障检测诊断问题中具有很高的实用价值。

关键词:电气设备;故障诊断;神经网络;学习算法

中图分类号:TP183

近年来,随着电气设备复杂度的增加,其发生故障的概率也逐渐上升。即使是熟练工程师,面对日趋复杂的设备内部电气结构,也难以迅速分析及判别其故障原因。与此同时,涌现出的各种智能算法、专家系统等,为设备诊断问题提供了可行的方案。其中,神经网络以其特有优势在电气设备故障诊断中发挥了重要作用。神经网络理论是人工智能、认知学、脑神经学、信息学等诸多学科融合发展的结果,它是由大量简单的处理单元(称为神经元),通过广泛的互相连接而形成的复杂网络系统。神经网络具有学习能力,可以根据电气设备的正常历史数据训练,将训练结果信息与当前测量数据进行比较,以确定故障。同时它具有滤除噪声的能力,这使其能在噪声环境中有效地在线监测及诊断。其具有的分辩故障原因及类型的能力,为未来实现故障智能诊断奠定了基础。本文介绍神经网络结构及其学习算法,提出一种基于BP网络的电气设备故障诊断方法,通过网络训练及结果测试表明,该方法具有良好的故障诊断能力。[JP]

1 BP神经网络模型

神经网络有很多模型,例如BP网络、Kohonen,Hopfield及ART等。其中,反向传播网络(Back[CD*2]Propagation Network)在神经网络的实际应用中有着十分重要的影响,工程应用中的绝大多数网络模型都采用BP模型或其变形,可以说BP模型体现了神经网络中的精华。

1.1 BP神经网络模型

以三层前向BP网络为例,对神经网络结构进行分析,其组成包括输入层、隐含层和输出层。如图1所示,图中圆圈表示神经元,W﹊r表示输入层第i个神经元与隐含层第r个神经元的连接权值;V﹔j表示隐含层第r个神经元与输出层第j个神经元的连接权值;其间的连线表示神经元之间的相互作用强度。И

从图1的结构中可以得到,隐含层节点的输出函数和输出层节点的输出函数分别为:

式中:T璻和θ璻分别为隐含层和输出层的单元阈值。在本文设计的獴P神经网络结构中,式(1)中的f(•)采用玸igmoid函数,即f(x)=(1+e-x)-1。И

1.2 BP学习算法

BP模型的成功得益于BP算法的应用,即误差反向传播算法。BP算法属于梯度下降算法,是一种监督式的学习算法。用网络的实际输出与目标矢量之间的误差来修正网络权值,使输出与期望尽可能接近(网络输出层的误差平方和达到最小);通过反复在误差函数梯度下降方向上调整网络权值的变化,逐渐逼近目标。每次权值和偏差的变化都与网络输出误差的影响成正比,并以反向传播的方式传递到每一层。BP网络是由两部分组成:信息的正向传递和误差的反向传播。

设神经元的输入矢量为[WTHX]X[WTBX]=[x1,x2,…,x璶],其中n是输入层的神经元数。对应于输入[WTHX]X的输出矢量是℡[WTBX]=[y1,y2,…,y璵],其中m 是输出层的神经元数。如果要求网络的期望输出是[WTHX]T[WTBX]=[t1,t2,…,t璵],г蛭蟛詈数可以定义为:

BP算法采用梯度下降法来调整网络的权值,以使上述误差函数减小,即:

Иw(n+1)=w(n)-η(礒/祑)[JY](3)И

式中:常数Е鞘侨ㄖ档髡速率,通常取值0.01≤η≤1。权值WУ牡髡方法采用以下公式:

式中:ИΔ玾﹑q表示某层第p个节点到下一层第q个节点的权值修正量;x璸表示节点p的输出;δ璹表示节点qУ亩说愕燃畚蟛,由输出层的等效误差反传而来:

式中:对应BP模型网络结构(见图1);节点玵位于输出层;节点h位于隐层。

2 电气设备故障检测实例

在电气设备中发动机是故障率比较高的设备之一,其在故障诊断中比较具有代表性。在此,以发动机为例,分析BP神经网络在电气设备故障诊断过程中的一般模式及步骤。

2.1 网络样本选取及参数选择

分析发动机的常见故障模式,首先选择具有代表性的故障作为特征向量,取[WTHX]X[WTBX]=[x1,x2,x3,x4]作为神经网络的输入。其中:x1代表功率不足故障;x2代表声音异常故障;x3代表排气温度高故障;x4代表消耗量过大故障。通过分析故障原因,取[WTHX]Y[WTBX]=[y1,y2,y3,y4,y5]作为目标输出向量。其中:y1代表点火不正确;y2代表高压线圈损坏;y3代表出现燃爆现象;y4代表进气排气管故障;y5代表增压积炭过多故障。表1给出了输入故障现象[WTHX]X和输出原因分析Y[WTBX]е间的对应关系。

由此可知,在设计基于三层BP神经网络的发动机故障诊断系统中,输入层神经元节点数N=4,输出层神经元节点数M=5。由公式h=(N+M)+σ可得隐含层神经元节点数h取3~6之间的数。И

2.2 训练及测试

通过输入样本组对所设计的网络进行训练,选择训练误差为10-6。例如,输入样本玔WTHX]X[WTBX]=[0,0,1,0],调整网络状态,使其输出接近目标[WTHX]Y[WTBX]=[1,0,0,1,0],即当发生排气温度过高故障时,可能原因是点火不正确以及进气排气管问题。训练网络的过程,实际上就是调整网络参数的过程,具体来说,最主要的就是确定各个网络权值。最终训练好的网络在测试过程中,能较为准确地诊断出故障问题的原因。在工程使用过程中,选择故障检测过程中各种仪器测量出来、有代表意义的测量数据,根据先验知识及专家分析,组成输入样本和目标向量组,对设计的网络结构训练。在训练过程中,可增加输入样本的数量。因为通过大量样本训练,神经网络能具有更好的适应性和鲁棒性,其故障诊断的准确性有所提高。采用C++猙uilder及Matlab混合编程,前者负责做界面系统的开发,后者集中在神经网络算法的设计上,据此进一步提高本工作的实际应用能力。

3 结 语

电气设备故障诊断对科研及生产过程有很大作用,快速准确地寻找故障原因,能极大地提高工作生产效率。与此同时,各种智能算法、仿生算法正迅速发展,并逐渐从实验室研究走向工程应用。神经网络以其学习能力、记忆性能及容错能力等优势,在各种智能算法中脱颖而出。本文分析了神经网络的结构及其学习算法,提出一种基于三层BP神经网络的电气故障诊断方法,并以发动机故障检测实例分析了特征向量的提取、神经网络训练等问题,编程实现了工程应用演示程序。输入样本训练及网络测试表明,神经网络在故障检测诊断问题中具备容错、推测、记忆、自适应等特点,具有很高的实用价值。

猜你喜欢

电气设备故障诊断神经网络
神经网络抑制无线通信干扰探究
PLC技术在电气设备自动化控制中的应用
基于神经网络的拉矫机控制模型建立
因果图定性分析法及其在故障诊断中的应用
复数神经网络在基于WiFi的室内LBS应用
10kV变配电站一、二次电气设备的选择
基于支持向量机回归和RBF神经网络的PID整定
基于LCD和排列熵的滚动轴承故障诊断
基于WPD-HHT的滚动轴承故障诊断
电气设备的防雷接地与保护