某高边坡安全系数计算及稳定控制研究
2010-06-13赵星时凯
赵星 时凯
边坡稳定性一直是岩土工程领域的一个热点研究课题,人们通常采用安全系数来评价其稳定性状态,因其原理简单,物理意义明确,至今仍为边坡稳定性分析中最重要的指标和概念。
1 工程概况
拟建高边坡工程项目是机械制造厂的一部分。机械厂整个场地南高北低,场地占地面积为2万m2,在机械厂南侧是拟建高边坡,坡顶标高约为9.5 m~40.0m,坡顶是一个小山坡,坡的北侧外约7.0m~9.0m是公路,公路标高约为19 m~36.5m。要求支护后坡脚标高为0m。边坡几何位置见图1。
根据岩土工程勘察报告,边坡支护范围内地层及力学参数主要为:①素填土及含碎石粉质黏土:黄褐色,红褐色,一般含5%~10%左右石英岩碎石,局部碎石含量可达45%左右,硬塑~坚硬状态,干强度高,韧性强。揭露层厚1.9 m~8.0m。C,φ设计值:C=32 kPa,φ=22°。②强风化板岩(Zwhc):灰黄色,碎裂结构,岩体风化节理裂隙发育,岩芯呈碎块状,块状,个别含薄层中风化夹层,但风化不均匀。揭露层厚14.50m~19.70m。岩体破碎,岩体基本质量等级Ⅴ级。C,φ设计值:C=44 kPa,φ=29°。③中、微风化板岩:灰褐色,灰绿色,块状结构,岩体风化节理裂隙较发育,岩芯呈块状、短柱状。揭露层厚14.50m~39.70m。岩体较完整,局部较破碎,岩体基本质量等级Ⅳ级。C,φ设计值:C=64 kPa,φ=35°。
根据勘察报告,该边坡支护工程开挖范围内无地下水。
2 极限平衡法下安全系数计算值
2.1 极限平衡法原理及概述
极限平衡方法的基本特点是,将边坡视为刚体,只考虑静力平衡条件和土的摩尔—库仑破坏准则。也就是说,通过分析土体在破坏时的力学平衡来求得问题的解。但在大多数情况下,通过这些条件建立的方程组是静不定的。极限平衡方法处理是对某些多余的未知量作一定简化假定,使问题变得静定可解。目前国内外常用的极限平衡法主要有Fellenius法、简化Bishop法、Morgenstern-Price法、Spencer(1967年,1973年)法、Sarma(1973年)法、Janbu(1973年)法和国内常用的推力传递法等,现对这些方法作一概述。
1)简化Bishop法。该法也只适用于圆弧滑动面。与瑞典圆弧法相比,它是在不考虑条块间切向力的前提下,满足力的多边形闭合条件。也就是说,隐含着条块间水平力的作用,虽然在它的计算公式中水平作用力并未出现。很多工程计算表明,该法与满足全部静力平衡条件的方法,如Janbu法相比,结果甚为接近。由于计算过程不很复杂,精度也比较高,所以,该方法是目前工程中很常用的一种方法。2)Fellenius法。Fellenius法又称瑞典圆弧法,假定滑动面为圆弧,是条分法中最古老而又最简单的方法。由于不考虑条间力的作用,严格地说,对每个土条力的平衡条件是不完全满足的,对土条本身的力矩平衡也不满足,仅能满足整个滑动土体的整体力矩平衡条件。由此产生的误差,一般使求出的稳定系数偏低10%左右,而且这种误差随着滑动面圆心角和孔隙压力的增大而增大。3)Morgenstern-Price法。Morgenstern-Price法适用于任意形状的滑动面,满足所有的极限平衡条件,其对多余未知数的假定并不是任意的,符合岩土的力学特性,是极限平衡法理论体系中的一种严格方法。它在数值计算中具有极好的收敛特性,因此被认为是对土坡进行极限平衡分析计算最一般的方法。
2.2 极限平衡法下安全系数计算值
根据图1,运用边坡计算软件进行了安全系数计算,采用圆弧滑动面搜索,经多次试算,选取安全系数为0.979作为边坡的临界稳定状态,安全系数最小的圆弧面滑体出口端接近坡底,滑体入口端接近公路旁。可能的滑动面主要都集中在这一带。
3 强度折减法
3.1 强度折减法原理
强度折减技术是利用折减系数F调整土体强度指标 C,φ:C′=C/F,φ′=arctan(tanφ/F),通过不断增加 F值,进行有限元反分析,直到计算不收敛,并将此时的折减系数作为安全系数,它能够体现土体的渐进破坏过程。
3.2 强度折减法下安全系数计算值
应用FLAC3D软件对拟建边坡进行了强度分析,围岩物理力学参数参照工程地质条件,由结果可知安全系数约为1.1。
强度折减法计算结果表明,边坡安全系数1.1作为边坡的临界稳定状态,安全系数最小的圆弧面滑体出口端接近坡底,滑体入口端接近公路旁。这与极限平衡法计算结果是一致的,强调了边坡可能的滑动面主要都集中在坡底——公路滑裂带。
4 边坡稳定控制建议
4.1 高边坡设计方案
高边坡设计采用放坡联合锚索支护方式,采用1∶0.4放坡开挖。分五级自上而下开挖,各级间设置3.0m宽平台。道路标高以上部分采用放坡,道路标高以下部分自上而下打入12排~14排预应力锚索,锚索长度10m~29m,锚索采用3束或两束1×7-15.2-1860钢绞线,水平间距 2.5m,竖向间距 2.5m,坡面采用钢筋混凝土面墙,厚300mm,采用双向HRB335钢筋网 Ф 12@200×200,坡面喷射C30混凝土。坡脚设置一个集水沟,坡顶设置一个拦水带。
4.2 高边坡监测及工程验证
高边坡监测主要采用位移监测为主,在公路附近布设了一系列表面位移监测点,监测结果区域稳定,最大位移为-15 mm,说明采用以上支护方案能确保工程安全。
5 结语
1)采用极限平衡法及强度折减法计算边坡安全系数是可行的。2)极限平衡法及强度折减法计算结果表明,此边坡安全系数远远低于规范安全系数1.3的要求,且岩体滑裂面主要集中在深部,圆弧面滑体出口端接近坡底,滑体入口端接近公路旁。建议施工期间监测布控主要设置在出口、入口段。3)工程实践表明,联合锚索支护方式能有效确保高边坡安全稳定。
[1]赵尚毅,郑颖人,时卫民.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-347.
[2]陈祖煌.土质边坡稳定分析——原理◦方法◦程序[M].北京:中国水利水电出版社,2003.
[3]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
[4]刘 波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
[5]彭文斌.FLAC3D实用教程[M].北京:机械工业出版社,2008.
[6]夏元友,李 梅.边坡稳定性评价方法研究及发展趋势[J].岩石力学与工程学报,2002,21(7):1087-1091.