APP下载

多观测列互差求中误差

2010-05-17邓永和

铁道勘察 2010年4期
关键词:贝塞尔测绘武汉

邓永和

(丽水学院建筑工程系,浙江丽水 323000)

1 概述

2 多观测列中误差公式推导

(1)

由于是等精度独立观测,故令观测值权阵为单位阵,则由最小二乘法得[2,4,5]

(2)

而观测值中误差(这里是单位中误差)为[2,4-5]

(3)

将式(1)和(2)代入式(3)得

(4)

式(4)就是本文推导的多观测列等精度观测值的中误差公式。

当n=1时,由式(3)得

(5)

式(5)就是中误差贝塞尔公式。

当r=2,即是双观测列,由式(4)得

(6)

根据式(5)、式(6)和式(4)可知:中误差贝塞尔公式与双观测列中误差公式是一致的,它们可以统一于多观测列中误差公式。但是,中误差贝塞尔公式并不能严格得到[4-8],那么,它与双观测列中误差一致,或许只是一种巧合。

当r=3,即是三观测列,由式(4)得

m=

(7)

(8)

(9)

从形式上看,上式与文献[3]的式(6)不同,但可以证明它们是相等的。下面是具体证明。

[(L3-L1)-(L3-L2)]T[(L3-L1)-

(L3-L2)]-(L2-L1)T(L2-L1)=0

(10)

展开得

(L3-L1)T(L3-L1)+(L3-L2)T(L3-L2)-

(L2-L1)T(L2-L1)-2(L3-L2)T(L3-L1)=0

(11)

(12)

(13)

顾及文献[3]中变量di(i=1,2,3)的含义、本文的dij(i,j=1,2,3)变量的含义,以及d13+d32=d12,

由文献[3]的公式(6)可得

(14)

顾及式(12),很容易得到式(13)和(14)是相等的结论。

3 结论

文献[3]中理论推导欠妥,但它的公式(6)的结果却正确。

笔者基于最小二乘法和单位权中误差公式,推导了多观测列中误差公式、中误差贝塞尔公式与双观测列中误差公式,揭示了中误差贝塞尔公式与双观测列中误差公式是一致的,它们可以统一于多观测列中误差公式之中。

[1]覃 辉.土木工程测量(第二版)[M].上海:同济大学出版社,2005

[2]武汉测绘科技大学测量平差教研室.测量平差基础[M].北京:测绘出版社,1996

[3]赵文亮.利用三观测列互差求中误差[J].测绘通报,2009(6):26-27

[4]崔希璋,等.广义测量平差[M].武汉:武汉测绘科技大学出版社,2001

[5]於宗俦,于正林.测量平差原理[J].武汉:武汉测绘科技大学出版社,1990

[6]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,1989

[7]邓永和.中误差贝塞尔公式的推导[J].大地测量与地球动力学,2009,29(3):128-130

[8]邓永和.中误差贝塞尔公式推导的进一步研究[J].铁道勘察,2009,35(5):8-9

展开全文▼
展开全文▼

猜你喜欢

贝塞尔测绘武汉
双零阶贝塞尔波束的传播及对单轴各向异性球的散射特性*
看星星的人:贝塞尔
别哭武汉愿你平安
我们在一起
武汉加油
决战武汉
浙江省第一测绘院
工程测绘中GNSS测绘技术的应用
04 无人机测绘应用创新受青睐
高鞋上云