高等金属学在材料研究领域中的地位和作用
2009-06-29邱小云
邱小云
摘要: 金属学以金属和合金的化学成分、加工工艺、组织结构和性能间的关系作为研究对象,而以这些关系作为依据,可以为金属材料设计适当的化学成分和适宜的加工工艺,从而获得预期的组织、结构和性能。
关键词: 高等金属学材料研究领域作用
在人类社会的发展过程中,材料的发展水平始终是时代进步和社会文明的标志。人类和材料的关系不仅广泛密切,而且非常重要。事实上,人类文明的发展史,就是一部人类利用材料和创造材料的历史。同时,材料的不断创新和发展,也极大地推动了社会经济的发展。在当代,材料、能源、信息是构成社会文明和国民经济的三大支柱,其中材料更是科学技术发展的物质基础和技术先导。
一
随着社会和科技的进步,人们不仅需要性能更为优异的各类高强、高韧、耐热、耐磨、耐腐蚀的新材料,而且需要各种具有光、电、磁、声、热等特殊性能和偶合效应的新材料,同时对材料与环境的协调性等方面的要求也日益提高。生物材料、信息材料、能源材料、智能材料和生态环境材料等将成为材料研究的重要领域。展望未来,材料科学与工程学科的发展方向将是:实现微结构不同层次上的材料设计,以及在此基础上的新材料开发;材料的复合化、低维化、智能化和结构材料—功能材料一体化设计与制备技术;材料加工过程的自动化、集成化,等等。
20世纪最重大的科技成就之一就是人类实现了原子核内部巨大能量的释放。尽管原子能时代的降临是以核武器为开端的,但核材料也能造福人类,特别是核反应堆、同位素的应用、核医学等。核反应堆一般采用热中子堆,堆心的结构件必须采用锆合金,因为锆合金吸收中子的几率很小,不会破坏堆内的链式反应,所以要建设核电工业系统,必须建立锆材料工业。
当今最具时代特征的工业是信息产业,信息产业的基石是半导体材料。任何高度复杂、高度精细加工的集成电路,都需要高纯度、高度掺杂的半导体材料和各种先进工艺的应用。信息技术的每一次突破都与材料和工艺的创新有着密切的关系,如高密度的光磁记录材料给信息的存储提供了极大的便利。
激光材料也是现代信息科技的一部分。各种波长的激光晶体、半导体激光器、激光光导纤维等对信息传输和信息高速公路的实现起着决定性的作用。
在航空航天技术的发展过程中,材料的发展水平对航空航天器的性能至关重要。航空用结构材料最主要的性能是高比强度和高比刚度,同时具有良好的工艺性能。高强度铝合金、钛合金和碳纤维增强的树脂基复合材料是主要的航空材料。火箭、导弹材料与航空材料相比,关键是瞬时性能。导弹壳体材料对导弹的射程至关重要,壳体由金属改为石墨纤维增强的复合材料后,洲际弹道导弹的射程可增加近1000公里。
进入21世纪后,新能源材料的发展将对社会经济产生重要影响。为了保障世界经济的可持续发展,解决越来越严重的温室效应和大气污染等环境问题,新能源材料将引导传统能源向洁净能源、可再生能源、分散型能源等多元化能源发展。除核能外,当今太阳能材料、燃料电池材料、锂离子电池材料等取得了很大的研究进展,在不久的将来必然会对社会经济等方面产生巨大影响。
二
一般来说,材料的基础研究和带有明确目的的开发性研究都有它们自身的价值。它们的效用有长有短,在实际生产上的体现有快有慢,但有一点是相同的,那就是要不断探索。材料的应用研究一旦成功,即一种材料诞生之后,它的应用价值和市场开发就可以产生较大的辐射作用。比如金属钛,作为一种航空材料,它可用于飞机,也可用于化工、建筑、潜艇、首饰等。其应用越广,需求量越大,则生产成本越低,越能带动相关领域的研究和发展。20世纪后期,由于材料的应用越来越广泛,并渗透到各行业,许多领域都与材料的制备、性质、应用等密切相关,使得材料成为机械、电子、化工、建筑、能源、生物、冶金、交通运输、信息科技等行业的基础,并与这些相关学科交叉发展。
三
自20世纪60年代初以来,物理、化学等学科的发展推动了对物质结构、物性和材料本质的研究和了解;冶金学、金属学、陶瓷学、高分子科学等的发展推动了对材料的制备、结构、性能及其相互关系的研究;金属材料、无机非金属材料、高分子材料等各类材料具有共同的或相似学科基础、学科内涵、研究方法与研究设备;同时科学技术的发展在客观上需要对各类材料的全面了解和研究。
现代科学技术发展的特点是,一方面,学科呈现出多科性,新兴学科不断涌现,另一方面,学科发展又呈现出高度综合的趋势,交叉学科和边缘学科层出不穷。学科交叉的形式可以多种多样。如美国的著名大学一般都设有材料研究中心或材料研究实验室,其研究人员往往横跨高分子、金属、陶瓷、表面改性、解剖、动物实验、细胞培养等研究方面。金属材料的性能主要取决于它的化学成分和组织、结构。化学成分不同的金属材料具有不同的性能;而相同成分的金属材料经过不同加工处理,具有不同的组织、结构时,也将具有不同的性能。可以认为:化学成分规定了组织、结构的可能变化范围,而加工工艺是获得某种预期组织、结构的手段。
四
金属学是以金属和合金的化学成分、加工工艺、组织结构和性能间的关系作为研究对象的,以这些关系作为依据,我们可以为金属材料设计适当的化学成分和适宜的加工工艺,从而获得预期的组织、结构和性能。
在金属学中,对组织、结构的分析和研究是十分重要的核心问题。
金属和合金在固态下通常是晶体。要了解金属材料内部的组织结构,我们首先必须了解晶体中原子的相互作用和结合方式,晶体中原子的聚集状态和分布规律,以及各种晶体的特点和彼此之间的差异,等等。这些研究涉及分子生物、固体物理、金属学、矿物学及聚合物等广泛领域。我们对晶体结构和晶体生长进行综合研究,可以获得控制组分和实际结构的知识,从而可以用各种手段来控制晶态材质的性质,据此还能探索具有非常宝贵性质的新晶体。事实上,对晶体的综合研究已经使人们制成了并且正在发展着一大批结构材料及功能材料。
金属学以金属电子论、晶体学(见晶体结构)及合金热力学为理论基础,依靠物理、化学的微观和宏观检测技术,扩展了金相学的内容,保持应用科学的传统,其研究内容可分为两方面:①联系成分、处理过程对金属组织结构和性能的影响,研究合金相结构和组织的形成规律,包括:研究合金相的形成、相图原理及其测定、合金元素及微量元素在合金相中的分布等合金组成的规律;研究晶体中原子的扩散过程;晶体重构的相变过程,包括金属的凝固与温度压力变化下的固态相变;研究晶体缺陷和金属形变过程中的位错运动;研究成分及杂质对金属性质的影响,包括超微量元素,以及微观和宏观偏析。②联系金属材料的使用,研究材料结构强度和断裂行为(见形变和断裂);研究金属材料在各种不同使用条件下的特性变化等(范性形变,疲劳,蠕变,应力腐蚀,断裂和氢脆);研究金属的强化原理。至于那些虽以金属为对象,或虽与金属有关,但主要研究晶体缺陷和金属电子结构,以及它们之间,或它们与各种射线之间的交互作用等微观过程;研究金属和合金的物性本质,或纯属探索自然规律的领域,则另列入金属物理,属凝聚态或固体物理的分支。
最近20年来,金属学出现不少新的突破,主要是由于新实验技术和新工艺的出现而取得的。例如,应用电子计算机进行图象处理,可以明显地提高电子显微镜的分辨能力,能直接看到金属中单个原子分布的图象(电子显微学);分析电子显微术和各种表面分析设备不断出现,将金属学的发展引向更加深入。又如应用激冷技术制成的快冷微晶合金和某些合金体系形成的非晶态金属,都各自显示出特有的性能,有很大的理论意义和实用价值,为金属学开拓了新园地,也为材料的研究提供了更便捷的手段。
五
高等金属学在我们现在所研究的“铝锌合金的耐腐蚀性”课题中也发挥着重要的作用。要研究铝锌合金的耐蚀性,我们首先必须了解材料的组织和性能,联系成分、处理过程对合金组织结构和性能的影响,研究合金相结构和组织的形成规律,包括:研究合金相的形成、相图原理及其测定、合金元素及微量元素在合金相中的分布等合金组成的规律,从而分析它在各种不同使用条件下的特性变化,也即包括材料在不同环境介质中的耐腐蚀性。这些都是高等金属学要研究的内容。随着材料的不断发展,高等金属学在材料研究领域中必将发挥越来越重要的作用。
参考文献:
[1]卢光熙,侯增寿.金属学教程.上海:上海科学技术出版社,1985.
[2]胡赓祥,钱苗根.金属学.上海:上海科学技术出版社,1980.
[3]弗豪文著.卢光熙等译.物理冶金学基础.上海:上海科学技术出版社,1980.
[4]刘国勋.金属学原理.北京:冶金工业出版社,1979.
[5]李薰.金属学.第七百科全书网.