关于数学思维能力培养的几点思考
2009-05-22刘学莲
刘学莲
数学思维是对数学对象(空间形式、数量关系、结构关系等)的本质属性和内部规律的间接反映,并按照一般思维规律认识数学内容的理性活动。新课标指出:义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律。数学在提高人的推理能力、抽象能力、想象力和创造力等方面有着独特的作用。新课标确立了知识与技能、过程与方法、情感态度与价值观三位一体的课程目标,将素质教育的理念体现在课程标准之中。通过引导学生主动参与、亲身实践、独立思考、合作探究,从而实现向学习方式的转变,发展学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力,以及交流与合作的能力。新课标关注的是数学课程目标,它包括:数学素养、数学知识与技能、数学思考、解决问题、情感与态度,注重学生经验、学科知识和社会发展三方面内容的整合,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
学生之所以在学习过程中会出现思维受阻的主要原因为:数学思想方法缺乏、学习目标确定不当、思维惰性造成思维模糊、思维惯性造成思维机械、各学段的衔接不当等。那么,在数学课堂教学中应当如何贯彻新课标的思想,更加有效地培养学生的数学思维能力呢?以下笔者谈几点自己的看法。
一、重点培养学生的思维品质
心理学家认为,培养学生的数学思维品质是发展数学能力的突破口。思维品质包括思维的深刻性、敏捷性、灵活性、批判性和创造性,它们反映了思维不同方面的特征,因此在教学过程中应该有不同的培养手段。
数学的性质决定了数学教学既要以学生思维的深刻性为基础,又要培养学生的思维深刻性。数学思维的深刻性品质的差异集中体现了学生数学能力的差异,教学中培养学生数学思维的深刻性,实际上就是培养学生的数学能力。数学教学中应当教育学生学会透过现象看本质,学会全面地思考问题,养成追根究底的习惯。对于那些容易混淆的概念,如正数与非负数、空集和集合{0}、锐角和第一象限的角、充分条件和必要条件、映射与一一映射等等,可以引导学生通过辨别对比,认清概念之间的联系与区别,在同化概念的同时,使新旧概念分化,从而深刻理解数学概念。通过变式教学揭示并使学生理解数学概念、方法的本质与核心。在解题教学中,引导学生认真审题,发现隐蔽关系,优化解题过程,寻找最佳解法等等。
数学思维的敏捷性,主要反映了正确前提下的速度问题。因此,在数学教学中,一方面可以考虑训练学生的运算速度,另一方面要尽量使学生掌握数学概念、原理的本质,提高所掌握的数学知识的抽象程度。因为所掌握的知识越本质、抽象程度越高,其适应的范围就越广泛,检索的速度也就越快。
另外,运算速度不仅仅是对数学知识理解程度的差异,而且还有运算习惯以及思维概括能力的差异。因此,数学教学中,应当时刻向学生提出速度方面的要求,另外还要使学生掌握速算的要领。例如,每次上课时都可以选择一些数学习题,让学生计时演算;结合教学内容教给学生一定的速算要领和方法;常用的数字,如20以内自然数的平方数、10以内自然数的立方数、特殊角的三角函数值、无理数π、е、lg2、lg3的近似值都要做到“一口清”;常用的数学公式,都要做到应用自如。实际上,速算要领的掌握和熟记一些数据、公式等,在思维活动中是一个概括的过程,同时也训练了学生的数学技能,而数学技能的泛化就会成为能力。
数学思维功能僵化现象在学生中大量存在,这与学生平时所受的思维训练有很大关系。教师在教学过程中过分强调程式化和模式化;例题教学中给学生归纳了各种类型,并要求学生按部就班地解题,不许越雷池一步;要求学生解答大量重复性练习题,减少了学生自己思考和探索的机会,导致学生只会模仿、套用模式解题。灌输式的教学使学生的思维缺乏应变能力。因此,为了培养学生的思维灵活性,应当增强数学教学的变化性,为学生提供思维的广泛联想空间,使学生在面临问题时能够从多种角度进行考虑,并迅速地建立起自己的思路,真正做到“举一反三”。教学实践表明,变式教学对于培养学生思维的灵活性有很大作用,在概念教学中,使学生用等值语言叙述概念、数学公式教学中,要求学生掌握公式的各种变形,这都有利于培养思维的灵活性。另外,思维的灵活性与思维的敏捷性是相互依存的,因此数学教学中采取措施(如编制口答练习题)加快学生的思维节奏,对于培养学生的思维灵活性也是很有好处的。
创造性思维的培养,首先应当使学生融会贯通地学习知识,在解题中应当要求学生独立起步,养成独立思考的习惯。在独立思考的基础上,还要启发学生积极思考,使学生多思善问,能够提出高质量的问题就是创新的开始。数学教学中应当鼓励学生提出不同看法,并引导学生积极思考和自我鉴别。
批判性思维品质的培养,可以把重点放在引导学生检查和调节自己思维活动的过程上。要引导学生剖析自己发现和解决问题的过程;学习中运用了哪些基本的思考方法、技能和技巧,它们的合理性如何,效果如何,有没有更好的方法;学习中走过哪些弯路,犯过哪些错误,原因何在。批判性思维的培养,有赖于教师根据学生的具体情况,有针对性地设计反思问题,以引起学生的进一步思考。
二、培养数学概括能力
数学教学中,应当强调数学的“过程”与“结果”的平衡,要让学生经历数学结论的获得过程,而不是只注意数学活动的结果。这里“经历数学结论的获得过程”的含义是什么呢?我们认为,其实质是要让学生有机会通过自己的概括活动,去探究和发现数学的规律。
概括是思维的基础。学习和研究数学,能否获得正确的抽象结论,完全取决于概括的过程和概括的水平。数学的概括是一个从具体向抽象、初级向高级发展的过程,概括是有层次的、逐步深入的。随着概括水平的提高,学生的思维从具体形象思维向抽象逻辑思维发展。数学教学中,教师应根据学生思维发展水平和概念的发展过程,及时向学生提出高一级的概括任务,以逐步发展学生的概括能力。
在数学概念、原理的教学中,教师应创设教学情境,为学生提供具有典型性的、数量适当的具体材料,并要给学生的概括活动提供适当的台阶,做好恰当的铺垫,以引导学生猜想、发现并归纳出抽象结论。这里,教师铺设的台阶是否适当,主要看它是否能让学生处于一种“似懂非懂”、“似会非会”、“半生不熟”的状态。猜想实际上是在新旧知识相互作用的过程中,学生对新知识的尝试性掌握。
教师设计教学情境时,首先,应当在分析新旧知识间的本质联系与区别的基础上,紧密围绕揭示知识间本质联系这个目的,安排猜想过程,促使学生发现内在规律;其次,应当分析学生已有数学认知结构与新知识之间的关系,并确定同化(顺应)模式,从而确定猜想的主要内容;再次,要尽量设计多种启发路线,在关键步骤上放手让学生猜想,使学生的思维真正经历概括过程。
概括的过程具有螺旋上升、逐步抽象的特点。在学生通过概括获得初步结论后,教师应当引导学生把概括的结论具体化。这是一个应用新获得的知识去解决问题的过程,是对新知识进行正面强化的过程。在这个过程中,学生的认知结构与新结论之间的适应与不适应之间的矛盾最容易暴露,也最容易引起学生形成适应的刺激。
在概括过程中,要重视变式训练的作用,通过变式,使学生达到对新知识认识的全面性;还要重视反思、系统化的作用,通过反思,引导学生回顾数学结论概括的整个思维过程,检查得失,从而加深对数学原理、通性通法的认识;通过系统化,使新知识与已有认知结构中的相关知识建立横向联系,并概括出带有普遍性的规律,从而推动同化、顺应的深入。
数学的表现方式是形式化的逻辑体系,数学理论的最后确立依赖于根据假定进行抽象概括的能力。因此,教师应当引导学生学会形式抽象,实际上这是一个高层次的概括过程,在这个过程中,学生的逻辑推理能力可以得到很好的培养。
三、给学生一个创新的空间
由于在传统的数学教学中,学生以接受知识为主,禁锢了创新思维。所以要培养学生的创新能力,必须给学生一个创新的空间。
(一)变一元评价为多元评价
“分,分,分,学生的命根。”学生在不断的考试中成了一名得分的机器人,恰恰丢掉了立足社会的真正的关键——创新能力。为此,我在数学教学中对学生进行了三个方面的评价:一是认真预习,认真听课,认真完成作业的态度评价;二是平时测验,期中、期末的考试评价;三是在课堂教学与选修课中表现出来的能力评价。班上准备一个笔记本,标题是《发明创造是从这里开始的》,专门记载学生在课堂上的奇思妙解,鼓励学生标新立异,创新组合知识来解题。期末数学总评时,对创新能力强的同学不但给高的总评成绩,而且写上鼓励其创新的评语,让学生感到老师对自己的认可,从而确定如何实现自我的目标。一旦学生确定了目标并为之奋斗,无异于引爆了自身学习潜能的核弹,成功是指日可待的。评价使学生获得成功,建立自信,为学生的成才服务,是今后选择评价形式与标准的一个重要原则。
(二)用研究型学习来培养学生创新组合知识的能力
学生只有运用多学科知识来解决问题,才能施展创新组合知识的才华。为此,我们可以利用周一和周四的“研究性学习”,让学生以数学知识为载体,去分析、化简或解决社会中存在的某些实际问题。
构建数学教学中的创新模式,培养学生的创新意识与创新能力是时代的要求,而老师的创新意识与创新能力是关键。老师只有不断地学习、思考,经常在头脑中组合新的教学模式,并不怕失败、勇于实践才能成为创新型教师。我们坚信,只要目标明确,勇敢地迈出第一步,并持之以恒,就一定能进入创新的自由王国。