APP下载

基于随机抽样和聚类特征的聚类算法

2003-04-29沈钧毅彭勤科

西安交通大学学报 2003年12期
关键词:聚类

周 兵 沈钧毅 彭勤科

摘要:在分析BIRCH算法不足的基础上,提出了一种基于随机抽样和聚类特征的聚类算法(CLAP).该算法采用随机抽样技术,从数据库中抽取一部分数据进行聚类的预处理过程,这样大大降低了运行时间.CLAP通过设立索引树的叶节点的直径和聚类直径,提高了聚类的精度,并采用全局搜索和局部搜索相结合的方式,消除了输入顺序对聚类质量的影响.测试结果表明,CLAP算法不仅提高了聚类速度,而且改善了聚类质量.

关键词:聚类;BIRCH算法;随机抽样

中图分类号:TP31l文献标识码:A文章编号:0253—987X(2003)12—1234—04

猜你喜欢

聚类
基于K-means聚类的车-地无线通信场强研究
基于DBSACN聚类算法的XML文档聚类
基于高斯混合聚类的阵列干涉SAR三维成像
条纹颜色分离与聚类
基于Spark平台的K-means聚类算法改进及并行化实现
局部子空间聚类
基于最小圆覆盖的海上突发事件空间聚类研究
基于改进的遗传算法的模糊聚类算法
一种层次初始的聚类个数自适应的聚类方法研究
基于熵权和有序聚类的房地产周期分析