特殊四边形专题原创题
2024-12-12邴国良
1. 如图1,已知矩形ABCD,AD = [3],点E是射线AB上一动点,点F,G在直线CD上,点E运动过程中始终满足EF = EG,∠FEG = 120°,射线FE与直线CB交于点P,延长EG到Q使GQ = FP,连接PQ交直线CD于点M,当GM = 1时,CG = .
2. 如图2,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(0,3),B(4,3),C(4,0). 动点Q从点O出发,以每秒5个单位长度的速度沿射线OC方向运动;动点P从点A同时出发,以每秒2个单位长度的速度沿射线AB方向运动. 设运动的时间为t秒,点O关于直线PQ的对称点为M,当点M落到直线BC上时,t = .
3. 如图3,已知矩形ABCD中,AB = 6,BC = 5,点E是边CD上一动点,连接EA,将线段EA绕点E沿逆时针方向旋转90°至EF,点A的对应点是点F,当△FBC是直角三角形时,S△ADF = .
答案:1. 2或4. 分两种情况.
(1)当点E在线段AB上时,如图4,过点P作PH [⫽] EG,交直线CD于点H,易证FP = PH,△PHM ≌ △QGM,GM = HM = 1,由题易求FG = 6,FH = 8,∴CH = 4,∴CG = 4 - 2 = 2. (2)当点E在线段AB的延长线上时,如图5,过点P作PH [⫽] EG,交直线CD于点H,易证FP = PH,△PHM ≌ △QGM,GM = HM = 1,由题易求FG = 6,FH = 4,∴CH = 2,∴CG = 2 + 2 = 4.
2. 0.5或2.
延长QP交y轴于点D,作矩形DOCN,则△DAP∽△DOQ,所以[DADO] = [APOQ] = [25],所以D(0,5),N(4,5),所以DN = 4. (1)当点Q在线段OC上时,如图6,DM = 5. 在Rt△DMN中,由勾股定理得MN = 3,CM = 2. 在Rt△QCM中,由勾股定理得QM = 2.5,则OQ = 2.5,所以t = [2.55] = 0.5. (2)当点Q在线段OC的延长线上时,如图7,DM = 5. 在Rt△DMN中,由勾股定理得MN = 3,CM = 8. 在Rt△QCM中,由勾股定理得QM = 10,则OQ = 10,所以t = [105] = 2.
3. [252]或25或[1358-5418]或[1358+5418].
(1)当∠FCB = 90°时,此时点F落在CD上,点E与点D重合,图略. 由旋转性质可知AE = EF = AD = 5,所以S△ADF = [252].
(2)当∠FBC = 90°时,此时点F落在直线AB上,如图8,过点E作EG [⊥] [AF]于点G. 由旋转性质可知,AE = EF,∠AEF = 90°,AG = FG,则AF = 2EG = 10,所以S△ADF = 25.
(3)当∠BFC = 90°时,过点 F 作 FP [⊥] DC,交DC延长线于点P,交AB延长线于点 Q,如图9,则FQ [⊥] AB. 设CP = x,根据题意可知△ADE ≌△EPF,则AD = EP = 5,所以CE = 5 - x,DE = PF = x + 1,BQ = CP = x,FQ = 4 - x,根据题意可知△CPF∽△FQB,则[x4-x] = [x+1x],解得[x1=34-414],[x2=34+414],所以S△ADF = [1358] - [5418]或[1358] + [5418].
(作者单位:沈阳市南昌初级中学)