D-AP5对PD小鼠黑质多巴胺能神经元簇状放电影响
2024-10-17赵继虎刘恒孙鹏
[摘要]目的探究侧脑室注射D(-)-2-氨基-5-磷戊酸(D-AP5)对1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)帕金森病(PD)模型小鼠黑质区多巴胺能神经元簇状放电的影响。
方法将小鼠随机分为对照组、D-AP5组、MPTP组和D-AP5+MPTP组。采用电生理实验记录小鼠黑质区多巴胺能神经元的簇状放电百分比。结果析因设计方差分析显示,D-AP5和MPTP两者存在交互作用(FMPTP=4.601,P<0.05;FD-AP5=2.399,P>0.05;FMPTP×D-AP5=12.020,P<0.01)。单独效应分析显示,在未注射MPTP的两组小鼠中,D-AP5组小鼠黑质区多巴胺能神经元簇状放电百分比与对照组小鼠相比差异无显著性(F=1.916,P>0.05);在注射MPTP的两组小鼠中,D-AP5+MPTP组小鼠黑质区多巴胺能神经元簇状放电百分比较MPTP组明显降低(F=12.094,P<0.01)。结论侧脑室注射D-AP5可降低MPTP模型小鼠黑质区多巴胺能神经元簇状放电百分比。
[关键词]帕金森病;受体,N-甲基-D-天冬氨酸;兴奋性氨基酸拮抗剂;黑质;多巴胺能神经元;电生理学;小鼠,近交C57BL
[中图分类号]R742.5;R392.11
[文献标志码]A
[文章编号]2096-5532(2024)04-0487-04doi:10.11712/jms.2096-5532.2024.60.046
[开放科学(资源服务)标识码(OSID)]
[网络出版]https://link.cnki.net/urlid/37.1517.R.20240424.0942.002;2024-04-2417:07:27
Effect of intracerebroventricular injection of D-AP5 on burst firing of dopaminergic neurons in the substantia nigra in a mouse model of Parkinson’s disease
ZHAO Jihu, LIU Heng, SUN Peng(Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266555, China); [Abstract]ObjectiveTo investigate the effect of intracerebroventricular injection of D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) on the burst firing of dopaminergic neurons in the substantia nigra ina mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
MethodsMice were randomly divided into control group, D-AP5 group, MPTP group, and D-AP5+MPTP group. The bursting rate of substantia nigra dopaminergic neurons was recorded through the electrophysiological test.
ResultsThe factorial analysis of variance indicated an interaction between D-AP5 and MPTP (FMPTP=4.601,P<0.05; FD-AP5=2.399,P>0.05;FMPTP×D-AP5=12.020,P<0.01). The individual effect analysis showed that there was no significant difference in the bursting rate of substantia nigradopaminergic neurons between the D-AP5 group and the control mice (F=1.916,P>0.05); and the D-AP5+MPTP group showed a significantly lower bursting rate compared with the MPTP group (F=12.094,P<0.01).
ConclusionIntracerebroventricular injection of D-AP5 can reduce the bursting rate of dopaminergic neurons in the substantia nigra of MPTP model mice.
[Key words]Parkinson disease; receptors, N-methyl-D-aspartate; excitatory amino acid antagonists; substantia nigra; dopaminergic neurons; electrophysiology; mice, inbred C57BL
帕金森病(PD)已成为威胁老年人生命健康的世界第二大类神经退行性疾病,其典型的临床表现为震颤、肌强直、运动迟缓等运动症状和焦虑、抑郁、睡眠障碍等非运动症状[1-3]。既往研究显示,PD病人中脑部位黑质(SN)区多巴胺能神经元的选择性死亡以及α-突触核蛋白(α-syn)的异常聚集成为其独有的病理特征[4-5]。而PD中晚期的病人中,黑质多巴胺能神经元簇状放电比例显著升高[6-7]。N-甲基-D-天冬氨酸(NMDA)受体是一种存在于神经细胞突触后膜上的离子型谷氨酸受体[8]。而NMDA受体作为谷氨酸门控离子通道,介导了脑和脊髓中大多数的兴奋性神经递质的传递,在中枢神经系统中发挥着重要作用。同时,NMDA受体的激活可以诱导正常小鼠中脑SN区多巴胺能神经元簇状放电增加[9]。但是,NMDA受体是否可以调控PD小鼠中脑黑质多巴胺能神经元的簇状放电活动仍不明确。因此,本研究利用电生理实验观察NMDA受体阻断剂D(-)2-氨基-5-磷戊酸(D-AP5)对1-甲
基-4-苯基-1,2,3,6-四氢吡啶(MPTP)处理的PD模型小鼠SN区多巴胺能神经元簇状放电的影响。现将结果报告如下。
1材料与方法
1.1实验材料
1.1.1实验动物选择及管理选取8~10周龄的C57BL/6雄性小鼠,购自北京维通利华实验动物技术有限公司。小鼠按照SPF级别要求饲养,室温(22±2)℃、湿度(50±10)%、12 h昼夜循环光照,小鼠自由活动及饮食,及时添置水粮、更换垫料。本研究已通过青岛大学实验动物伦理委员会批准。
1.1.2实验试剂及来源异氟烷购于瑞沃德生物科技有限公司,乌拉坦购于麦克林生化科技有限公司,MPTP和D-AP5均购于美国Sigma公司。
1.2实验方法
1.2.1小鼠侧脑室埋管小鼠通过麻醉机持续吸入异氟烷,并将小鼠固定于脑立体定位仪上。将导管帽和导管(型号为62102和62003,瑞沃德生物科技有限公司)置于右侧脑室(前囟后0.3 mm,右侧旁开1.0 mm,颅骨表面下2.2 mm),并利用牙托胶固定。小鼠置入脑室导管后恢复7 d。
1.2.2实验分组及处理侧脑室埋管7 d后将小鼠随机分为对照组、D-AP5组、MPTP组和D-AP5+MPTP组,每组10只。对照组小鼠分别在侧脑室和腹腔注射生理盐水;D-AP5组给予D-AP5侧脑室注射和生理盐水腹腔注射;MPTP组给予生理盐水侧脑室注射和MPTP腹腔注射;D-AP5+MPTP组小鼠给予D-AP5侧脑室注射和MPTP腹腔注射。根据预实验结果,D-AP5给药剂量400 ng/d,MPTP给药剂量为30 mg/(kg·d)。侧脑室注射体积为1 μL,注射时间为1 min,留针2 min;腹腔注射体积为5 μL/g体质量。各组首先侧脑室注射相应的药物3 d进行预处理,再行腹腔注射相应的药物5 d。完成药物注射后的1~3 d进行行为学检测,第4天开始进行电生理实验。
1.2.3在体细胞外电生理实验用200 g/L乌拉坦溶液麻醉小鼠,实验过程中采用恒温垫维持小鼠体温(37.0±0.5)℃。利用小鼠适配器固定头部,沿头部正中线剪开小鼠头皮,暴露并分离肌层组织,用蘸湿过氧化氢溶液的消毒棉棒擦拭骨膜表面,以生理盐水冲洗后充分暴露前囟至后囟区域。以前囟为坐标原点,参考脑图谱确定小鼠SN区(前囟后3.0~3.2 mm,左右旁开1.0~1.2 mm),标记后进行直径约2.0 mm的颅骨钻孔;清理骨碎片及包含血管的硬脑膜,消毒棉球压迫止血,生理盐水保持脑表面湿润。调整立体定位仪旋钮移动玻璃电极至SN区表面上方,接触生理盐水后改用显微操作器控制玻璃电极下降(深度4.0~4.5 mm)。根据放电频率及波形特点记录多巴胺能神经元自发性放电活动,经生物信号放大器和数模转换器传输至计算机显示器。每个多巴胺能神经元的记录时间不尽相同,时间范围一般为1 000~3 000 s。神经元放电活动记录完成后,利用Spike 2软件进行记录和分析。选取稳定时间内的簇状放电神经元计算百分比:簇状放电的尖峰个数/所有尖峰个数×100%。
1.2.4实验验证方法完成在体细胞外电生理实验后,小鼠断头取脑。一半鼠脑提取SN组织,采用Western Blotting检测酪氨酸羟化酶(TH)的表达,TH表达水平显著降低提示造模成功。另一半鼠脑进行切片观察,对照小鼠脑图谱确定埋管位置和下针位置。
1.3统计学处理
应用SPSS 19.0软件进行统计学分析。计量资料数据采用±s表示,采用2×2因素析因设计的方差分析比较MPTP和D-AP5对PD模型小鼠SN区多巴胺能神经元放电影响的差异。以P<0.05为差异具有统计学意义。
2结果
电生理实验显示,在对照组、D-AP5组、MPTP组和D-AP5+MPTP组小鼠SN区中分别记录到了7、7、7和6个神经元的放电活动。Spike 2软件分析结果表明,对照组多巴胺能神经元簇状放电百分比为(1.851±0.733)%,D-AP5组为(5.181±1.766)%,MPTP组为(11.590±2.481)%,D-AP5+MPTP组为(2.887±1.338)%。析因设计的方差分析显示,两因素间存在交互作用(FMPTP=4.601,P<0.05;FD-AP5=2.399,P>0.05;FMPTP×D-AP5=12.020,P<0.01)。单独效应分析显示,当腹腔未注射MPTP时,D-AP5组小鼠SN区多巴胺能神经元簇状放电百分比与对照组小鼠相比,差异无显著意义(F=1.916,P>0.05);当腹腔注射MPTP时,D-AP5+MPTP组小鼠SN区多巴胺能神经元簇状放电百分比较MPTP组明显降低(F=12.094,P<0.01)。实验结果表明,MPTP能够促进小鼠SN区多巴胺能神经元簇状放电的发生,而D-AP5则可以
拮抗MPTP对小鼠SN区多巴胺能神经元簇状放电的影响。
3讨论
谷氨酸等神经递质可以激活NMDA受体,且导致受体的蛋白构象发生改变,进而使得离子通道开放,Na+、K+和Ca2+可通过NMDA受体进入细胞膜内,完成细胞膜的去极化过程[10-11]。NMDA受体还可以调节神经元活性和神经元回路形成,从而影响哺乳类动物的学习和记忆过程[12]。NMDA受体在中脑广泛分布,能够直接诱导皮质、海马体、杏仁核和外侧缰核等部位的神经元兴奋[13-14]。在正常静息膜电位下,细胞外Mg2+与离子通道孔内的位点结合而被阻断。谷氨酸和甘氨酸等激动剂对NMDA受体的过度刺激会导致神经元去极化和Mg2+排出,从而打开离子通道使Ca2+流入[15-16]。随后,细胞内过量的Ca2+积累会引起一连串Ca2+依赖性酶和细胞内病理生理变化,从而导致神经元损伤和死亡[17-19]。有研究结果表明,PD诱导的多巴胺耗竭会导致NMDA受体亚基重新分布[20-21]。在利用左旋多巴治疗的PD动物模型中,NMDA受体的亚基(GluN2A)和亚基之间的比例(GluN2A/GluN2B)都会增加[22-23]。尽管各NMDA受体亚基对多巴胺耗竭的敏感性不同,但在PD大鼠的不同神经核团中,GluN1和GluN2B亚基表达水平均有所升高[24],纹状体中的GluN2D亚基也会增加[25]。近年来的研究显示,在PD病人和PD动物实验模型的纹状体和伏隔核中,NMDA受体结合水平显著增加,并加速多巴胺能神经元选择性凋亡过程[26]。上述结果表明,NMDA受体的激活在PD中的负面作用是显而易见的。
多巴胺能神经元具有特殊的电生理学特点,主要表现为规则放电、不规则放电和簇状放电3种放电模式[27]。其中,簇状放电尖峰可以发生在所有放电模式中。有研究报道,簇状放电在突触可塑性和信息处理中发挥重要作用[28]。当SN区多巴胺能神经元发生簇状放电时,纹状体多巴胺会瞬时释放,引起奖赏等相关行为[29]。也有研究发现,簇状放电和精神症状息息相关,当抑制腹内侧下丘脑核神经元的簇状放电时,可以缓解慢性压力应激小鼠模型的焦虑行为[30]。另外,簇状放电活动增多会引起多巴胺能神经元的生理功能发生改变,同时引起神经元相互间作用的神经环路发生改变[31]。在PD中,
由于SN投射到纹状体的多巴胺能神经元减少,导致间接通路中的丘脑底核(STN)发生去抑制[32]。而STN中的谷氨酸能神经元还能投射至SN的致密部,从而增加了兴奋性谷氨酸的数量[33-34]。这可能是引起多巴胺能神经元簇状放电增多的主要原因之一。在本次研究中,我们证明了抑制NMDA受体可以减少PD模型小鼠SN区多巴胺能神经元簇状放电的发生。但是,PD是基于何种机制导致SN区多巴胺能神经元发生簇状放电的改变,以及抑制NMDA受体影响了何种神经环路使得多巴胺能神经元簇状放电的发生减少,需要我们在今后的研究中进一步探索。
[参考文献]
[1]SAMII A, NUTT J G, RANSOM B R. Parkinson’s disease[J]. The Lancet, 2004,363(9423):1783-1793.
[2]TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson’s disease[J]. The Lancet Neuro-
logy, 2021,20(5):385-397.
[3]DE LAU L M, BRETELER M M. Epidemiology of Parkinson’s disease[J]. The Lancet Neurology, 2006,5(6):525-535.
[4]ATIK A, STEWART T, ZHANG J. Alpha-synuclein as a bio-
marker for Parkinson’s disease[J]. Brain Pathology, 2016,26(3):410-418.
[5]YUAN X, YANG Y X, LIU C Y, et al. Fine particulate matter triggers α-synuclein fibrillization and parkinson-like neurodegeneration[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2022,37(9):1817-1830.
[6]SCHIEMANN J, SCHLAUDRAFF F, KLOSE V, et al. K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration[J]. Nature Neuroscience, 2012,15(9):1272-1280.
[7]SCHERER M, STEINER L A, KALIA S K, et al. Single-neuron bursts encode pathological oscillations in subcortical nuclei of patients with Parkinson’s disease and essential tre-
mor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022,119(35):e2205881119.
[8]ZHOU H X, WOLLMUTH L P. Advancing NMDA receptor physiology by integrating multiple approaches[J]. Trends in Neurosciences, 2017,40(3):129-137.
[9]ZAKHAROV D, LAPISH C, GUTKIN B, et al. Synergy of AMPA and NMDA receptor currents in dopaminergic neurons: a modeling study[J]. Frontiers in Computational Neuroscience, 2016,10:48.
[10]CARROLL R C, ZUKIN R S. NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity[J]. Trends in Neurosciences, 2002,25(11):571-577.
[11]MODY I, MACDONALD J F. NMDA receptor-dependent ex-
citotoxicity: the role of intracellular Ca2+ release[J]. Trends in Pharmacological Sciences, 1995,16(10):356-359.
[12]CULL-CANDY S, BRICKLEY S, FARRANT M. NMDA receptor subunits: diversity, development and disease[J]. Current Opinion in Neurobiology, 2001,11(3):327-335.
[13]KIM J J, SAPIO M R, VAZQUEZ F A, et al. Transcriptional activation, deactivation and rebound patterns in cortex, hippocampus and amygdala in response to ketamine infusion in rats[J]. Frontiers in Molecular Neuroscience, 2022,15:892345.
[14]MA S S, CHEN M, JIANG Y H, et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb[J]. Nature, 2023,622(7984):802-809.
[15]LU Y M, YIN H Z, CHIANG J, et al. Ca(2+)-permeable AMPA/kainate and NMDA channels: high rate of Ca2+ influx underlies potent induction of injury[J]. The Journal of Neuroscience, 1996,16(17):5457-5465.
[16]EHINGER R, KURET A, MATT L, et al. Slack K+ channels attenuate NMDA-induced excitotoxic brain damage and neuronal cell death[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2021,35(5):e218c74375e67888ebc997105a1ab21dfe96d900d504d472bee716e31101142a504568.
[17]SIBAROV D A, BOLSHAKOV A E, ABUSHIK P A, et al. Na+, K+-ATPase functionally interacts with the plasma membrane Na+, Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress[J]. The Journal of Pharmacology and Experimental Therapeutics, 2012,343(3):596-607.
[18]DONG Y L, KALUEFF A V, SONG C. N-methyl-d-aspartate receptor-mediated calcium overload and endoplasmic reticulum stress are involved in interleukin-1beta-induced neuronal apoptosis in rat hippocampus[J]. Journal of Neuroimmunology, 2017,307:7-13.
[19]PHILIPPART F, DESTREEL G, MERINO-SEPLVEDA P, et al. Differential somatic Ca2+ channel profile in midbrain dopaminergic neurons[J]. The Journal of Neuroscience, 2016,36(27):7234-7245.
[20]ARFANI A E, BENTEA E, AOURZ N, et al. NMDA receptor antagonism potentiates the L-DOPA-induced extracellular dopamine release in the subthalamic nucleus of hemi-parkinson rats[J]. Neuropharmacology, 2014,85:198-205.
[21]KHOBOKO T, RUSSELL V A. Effects of development and dopamine depletion on striatal NMDA receptor-mediated cal-
cium uptake[J]. Metabolic Brain Disease, 2008,23(1):9-30.
[22]OH J D, RUSSELL D S, VAUGHAN C L, et al. Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and L-DOPA administration[J]. Brain Research, 1998,813(1):150-159.
[23]QUINTANA A, SGAMBATO-FAURE V, SAVASTA M. Effects of L-DOPA and STN-HFS dyskinesiogenic treatments on NR2B regulation in basal Ganglia in the rat model of Parkinson’s disease[J]. Neurobiology of Disease, 2012,48(3):379-390.
[24]ZHU S J, STEIN R A, YOSHIOKA C, et al. Mechanism of NMDA receptor inhibition and activation[J]. Cell, 2016,165(3):704-714.
[25]MELLONE M, ZIANNI E, STANIC J, et al. NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology[J]. Neurobiology of Disease, 2019,121:338-349.
[26]UAS J, WEIHMULLER F B, BRUNNER L C, et al. Selective increase of NMDA-sensitive glutamate binding in the striatum of Parkinson’s disease, Alzheimer’s disease, and mixed Parkinson’s disease/Alzheimer’s disease patients: an autoradiographic study[J]. The Journal of Neuroscience, 1994,14(11 Pt 1):6317-6324.
[27]PALADINI C A, ROEPER J. Generating bursts (and pauses) in the dopamine midbrain neurons[J]. Neuroscience, 2014,282:109-121.
[28]ZHAO N, SONG J, LIU S Q. Multi-timescale analysis of midbrain dopamine neuronal firing activities[J]. Journal of Theoretical Biology, 2023,556:111310.
[29]FERRIS M J, MILENKOVIC M, LIU S, et al. Sustained N-methyl-d-aspartate receptor hypofunction remodels the dopamine system and impairs phasic signaling[J]. The European Journal of Neuroscience, 2014,40(1):2255-2263.
[30]SHAO J, GAO D S, LIU Y H, et al. Cav3.1-driven bursting firing in ventromedial hypothalamic neurons exerts dual control of anxiety-like behavior and energy expenditure[J]. Molecular Psychiatry, 2022,27(6):2901-2913.
[31]GANTZ S C, FORD C P, MORIKAWA H, et al. The evolving understanding of dopamine neurons in the substantia nigra and ventral tegmental area[J]. Annual Review of Physiology, 2018,80:219-241.
[32]ADAM E M, BROWN E N, KOPELL N, et al. Deep brain stimulation in the subthalamic nucleus for Parkinson’s disease can restore dynamics of striatal networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022,119(19):e2120808119.
[33]VILLALBA R M, MATHAI A, SMITH Y. Morphological changes of glutamatergic synapses in animal models of Parkinson’s disease[J]. Frontiers in Neuroanatomy, 2015,9:117.
[34]LEE L N, HUANG C S, CHUANG H H, et al. An electrophysiological perspective on Parkinson’s disease: symptomatic pathogenesis and therapeutic approaches[J]. Journal of Biomedical Science, 2021,28(1):85.
(本文编辑于国艺)