APP下载

无机酸掺杂聚苯胺/碳纤维复合海洋电场传感器电极

2024-03-28侯晓帆孙久哲许嘉威胡承儒付玉彬

上海交通大学学报 2024年3期
关键词:电场电位线性

侯晓帆, 孙久哲, 许嘉威, 胡承儒, 付玉彬

(中国海洋大学 材料科学与工程学院,山东 青岛 266100)

海洋环境中存在大量电场信号,收集、识别这些电场信号可用于地球物理电磁测量、海底油气资源勘探、舰船目标探测等目的,具有重大经济与军事意义[1-2].随着海洋探测技术发展,我国对海洋电场信号处理越来越重视,故开发水下电场探测技术具有广阔的应用前景.

对水下电场的探测通过两电极间电压差变化反映[3-4].而在实海中,由于海水对电场存在衰减作用,只有低频的电场传输距离较远,所以主要检测的是低频电场.目前Ag/AgCl电极应用最广,但具有造价高、易见光分解、储存运输不便等缺点[5-6].相比较而言,碳纤维(Carbon Fiber, CF)电极依靠电极/海水界面双电层结构的变化实现对外电场的检测,虽然物理化学稳定性好并且成本更低,但是电极/海水界面双电层结构松散,电位稳定性差,电极自噪声高,因此难以实现对海中微弱电场信号的良好检测.CF表面引入极性基团有望改善表面双电层结构,提高该类电极的电场响应性能.如Liu等[4]在CF表面引入含氧、含氮基团,提高电极响应灵敏性;Zai等[7]将聚丙烯腈碳纤维(Polypropylene Cyanocarbon Fiber, PAN-CF)进行电化学氧化改性,改善电极自噪声和电场响应性能.

聚苯胺(Polyaniline, PANI)是一种常用的功能高分子,在储能、传感等领域应用广泛.李洋等[8]将PANI改性后的碳材料用于海底微生物燃料电池阴极,显著提高电池输出功率和产电量;Wei等[9]通过脉冲电流法在CF表面聚合PANI制作复合电极,以此制成最大比电容为323 F/g的超级电容器; Boota等[10]将PANI沉积在氧化石墨烯片上制成电容,具有杰出的循环性.PANI与CF复合后,可增大电极比表面积、改善润湿性等,PANI良好的导电性与亲水性、含氮基团的极性有望改善电极的电场响应性能.

以PAN-CF为基体,利用电化学原位聚合法在其表面生成无机酸掺杂PANI导电薄膜,制备聚苯胺/碳纤维(PANI/CF)复合电极并首次用于海洋电场传感器.利用电化学性能和水下电场响应性能表征,验证PANI/CF复合电极用于海洋电场传感领域的可行性,并进一步探究不同无机酸掺杂对电极性能的影响机制.

1 实验部分

1.1 样品制备

实验使用未上浆PAN-CF,先后置于乙醇与丙酮体积比为1∶1的混合溶液和蒸馏水中超声清洗表面并烘干.

然后将PAN-CF制成简易电极接入电化学工作站中,对电极为铂片电极,参比电极为饱和甘汞电极.分别配制浓度为0.5 mol/L的盐酸、硫酸、磷酸溶液各500 mL,并加入质量分数为1%的苯胺单体制成电解液.设置聚合电流为0.1 A,聚合时间为10 min.聚合完成后再次清洗,得到不同酸掺杂的 PANI/CF 复合电极,并标记为PANI/CF-HCl、PANI/CF-H2SO4、PANI/CF-H3PO4.空白组为仅经过清洗的CF电极,标记为Blank.

PANI/CF电场传感器组装与配对.将制备好的PANI/CF复合电极烘干后封装至保护套,保护套由微孔材料制成,保证良好透水性的同时保护电极.测试电极电位稳定性测试,选取电位最为相近的两支电极编配成对,完成电场传感器的组装与配对.

1.2 CF表面特征与电化学测试

使用红外光谱和X射线光电子能谱(X-ray Photoelectron Spectroscopy, XPS)测试表征样品表面官能团和元素,扫描电子显微镜(Scanning Electron Microscope, SEM)观测样品表面形貌.应用循环伏安(Cyclic Voltammetry, CV)与电化学交流阻抗测试表征电化学性能.

1.3 电场性能测试

应用电极电位稳定性与电场信号频率响应测试表征电极电场性能.将电极置于盛有海水的水槽中,使用多通道信号记录仪(Agilent 34972A)采集电极电位.使用电场信号发射装置(Agilent 33509B)施加一定频率和振幅的正弦波电场信号模拟水下电场环境,再利用多通道信号记录仪记录电极响应情况.

采用拟合线性度表征配对电极响应的准确度,固定一定的发射信号频率,测量不同场强下的响应幅值,对最大响应幅值与施加信号峰值进行线性拟合,采用端基拟合直线方法计算配对电极在不同振幅下的响应线性误差,以最大线性误差作为其线性度,线性度越小就表示配对电极准确度越高.线性度计算公式如下:

(1)

式中:ΔLmax为测量值与拟合值之间的最大偏差;YF.S为满量程输出;k为拟合直线斜率;Xn-X1为满量程输出对应的x轴取值范围.

2 结果与分析

2.1 表面特征分析

2.1.1红外光谱分析 PANI/CF电极的红外光谱测试结果如附录图1所示.3组实验样品中PANI的特征峰位置基本一致.1 142 cm-1处吸收峰对应于芳香族共轭的C—H伸缩振动[11];1 299 cm-1处为C—N伸缩振动峰;1 495 cm-1与 1 566 cm-1左右特征峰分别为苯式结构单元N—B—N和醌式结构单元N=Q=N的伸缩振动[12].附录表1列出掺杂PANI特征峰的具体位置,与文献中PANI特征峰位置相吻合,表明CF表面成功合成含有醌环和苯环结构的导电PANI.

2.1.2XPS分析 XPS测试得到PANI/CF电极表面化学成分如附录图2(a)所示,主要为C、N、O元素;另外PANI/CF-HCl、PANI/CF-H2SO4、PANI/CF-H3PO4组中,分别含有微量的Cl、S、P元素.其中,C元素与N元素主要来源于CF表面的PANI骨架,O元素源于膜表面的部分氧化或少量络合的酸根氧原子,Cl、S、P元素源于掺杂PANI中的反离子或聚合过程中使用的溶液.表1列出 PANI 膜中各元素的相对含量.表中:r为相对含量;n为原子数;下标为元素符号;空白表示该电极不含相应元素.一般来说,PANI中苯胺单元的碳氮比为6,聚丙烯腈碳纤维本身含有的C、N元素使碳氮比发生改变.

表1 XPS定量分析得到的各元素相对含量Tab.1 Relative contents of different elements obtained by quantitative analysis of XPS

PANI的通式为[(—B—NH—B—NH—)y(—B—N=Q=N—)1-y]x, 其中,B和Q分别表示苯型和醌型的C6H4环.通过N 1s分峰可进一步得到不同化学状态氮原子的相对含量.附图2(b)为N 1s分峰结果,其中389.5 eV为醌型环中的亚胺氮(—N=)[13],399.6 eV为苯型环中的胺氮(—NH—)[14],401.1 eV与402.6 eV为带正电荷的N+(氧化胺或质子化亚胺)[15-16].每个样品中不同化学状态下氮的比例由N 1s分峰确定并列于表2.从表中可以看出H2SO4掺杂的 PANI-N=/-NH—最大,表明PANI链中约有30%的醌式环和70%的苯式环;HCl掺杂的PANI-N=/-NH—最小,约有20%的醌式环和80%的苯式环.由N+/N可知,各类酸的掺杂水平基本一致,在32%~34%.

表2 精细谱拟合产生的不同氮基团对N 1s光电子谱的贡献Tab.2 Contribution of different nitrogen groups produced by fine spectrum fitting to N 1s photoelectron spectrum

2.1.3显微结构分析 碳纤维表面形貌如图1所示.Blank电极表面光滑,仅残留有痕量杂质(见图1(a));PANI/CF-HCl电极表面PANI膜均匀多孔,呈珊瑚礁状(见图1(b));PANI/CF-H2SO4电极表面形成不均匀PANI膜(见图1(c));PANI/CF-H3PO4电极表面PANI呈现处颗粒状,并存在团聚现象,导致PANI膜厚度不均(见图1(d)).不同酸掺杂得到的PANI形貌有较大差异,这对PANI/CF电极响应电场信号及其他性能可能有较大影响.

图1 PANI/CF电极SEM图Fig.1 SEM of PANI/CF electrodes

2.2 电化学性能分析

2.2.1循环伏安曲线分析 图2为CV测试结果.图中:I为电流;V为电压,相对于饱和甘汞电极.其中Blank电极CV曲线无氧化还原峰,呈电容特性;PANI/CF电极的CV曲线均可观察到PANI由离子掺杂和脱掺杂引起的氧化还原峰.在该过程中,电位正方向扫描时,掺杂PANI中的原有掺杂离子释放,并伴随对溶液中阴离子的掺杂,电位反转时,新掺杂离子被重新释放;电位负方向扫描时质子被吸收,并在电位逆转后从聚合物膜中释出[17].

图2 不同PANI/CF复合电极在3.5% NaCl溶液中1 mV/s扫速下的CV曲线Fig.2 CV curves of different PANI/CF composite electrodes in 3.5% NaCl solution at a sweeping rate of 1 mV/s

由图2可知,在3种酸掺杂的PANI/CF复合电极中,PANI/CF-HCl 和PANI/CF-H3PO4样品曲线对称性较好,具有良好的充放电可逆性,有利于电场传感器的长期使用.根据CV曲线面积计算材料比电容值,如表3所示.其中PANI/CF-H2SO4比电容最高,为55.17 F/g,为Blank电极的167.62倍.PANI/CF-HCl 电极在具有良好充放电可逆性的同时还具有较大比电容,这将拓宽电场传感器对电场信号响应的幅频范围.

表3 空白碳纤维与PANI/CF电极材料的比电容值Tab.3 Specific capacitances of different electrodes

2.2.2电化学阻抗分析 Blank电极与PANI/CF复合电极的阻抗值(|Z|)随频率(f)变化关系如图3(a)所示;拟合后的交流阻抗(Z)复平面图如图3(b)所示,插图为等效电路,其中W为电感;等效元件参数如表4所示.表中:Rs为复合电极液接电阻;Rct为电荷转移电阻;空白表示不适用.

图3 交流阻抗测试结果Fig.3 Results of AC impedance test

从图3(a)可看出PANI/CF复合电极低频阻抗值大幅度降低,表4显示PANI/CF复合电极在0.01 Hz处阻抗值(|Z|)至少降低为Blank电极的1/118,有利于电场传感器电极对水下微弱电场信号的接收.

图4 电极电位稳定性测试结果Fig.4 Results of electrode potential stability test

表4 阻抗拟合结果Tab.4 Fitting results of impedance data

图3(b)所示的等效电路模型显示Blank电极为溶液电阻和双电层电容串联模型;PANI/CF复合电极增加了法拉第阻抗与双电层电容CPE并联,与CV测试结果相对应,这可能会增加电场传感器电极对微弱信号的响应灵敏度.此外复合电极液接电阻Rs有所增大,这是由于PANI膜电阻导致的.

2.3 电场性能

表5 电极电位漂移量Tab.5 Drift of electrode potential

2.3.2电场信号响应分析 图5为配对电场电极对不同强度的正弦波电场信号响应测试.其中图5(a)为10 mV/10 mHz的响应曲线,此强度下Blank电极出现明显的漂移现象,PANI/CF复合电极可更好地响应发射信号.图5(b)为1 mV/10 mHz条件下的响应曲线,Blank电极已无法响应,PANI/CF复合电极仍具有可见的响应波形,但也出现明显的漂移现象.其中PANI/CF-HCl电极响应曲线稳定性要明显优于其他电极.

图5 配对电场传感器电极对不同强度正弦波电场信号响应图谱Fig.5 Response spectra of paired electrode electric field sensor to different intensity sine waves electric field signals

图6为配对电极对10 mV/10 mHz发射信号的最大响应幅值(Umax)比较结果,可以看出Blank电极漂移现象严重,与PANI/CF配对电极不具备可比性.在相同的发射信号强度下PANI/CF-HCl电极具有最大的响应幅值(0.30 V),比PANI/CF-H2SO4电极和PANI/CF-H3PO4电极幅值(0.23、0.27 V)分别提升约30%和11%.

图6 10 mV/10 mHz条件下响应曲线的最大响应幅值比较Fig.6 Comparison of maximum response amplitudes of response curves at 10 mV/10 mHz

由于PANI/CF-HCl电极表面PANI成膜均匀多孔(见图1(b)),PANI/CF-H2SO4电极表面 PANI 膜未完全覆盖碳纤维(见图1(c)),PANI/CF-H3PO4电极表面PANI存在团聚现象,厚度不均(见图1(d)),电极表面状态影响电极/海水界面形成的双电层结构;并且有研究利用多孔碳膜表面规律生成的疏水性和亲水性基团,实现液滴在材料表面的流动从而产生电势差,即水伏效应[20-21],所以电极表面成膜不均匀会有干扰信号,干扰电极对微弱电场信号的检测,成膜更均匀的PANI/CF-HCl电极受到的干扰最少.因而3种电极中PANI/CF-HCl电极电场响应性能最优,这也应与HCl掺杂电极具有较好的氧化还原可逆性有关.

2.3.3最大线性误差分析 为了研究配对电极响应水下电场信号的准确度,在固定频率0.1 Hz场源信号下,分别测量场幅为1、3.7、10、37、50、100、370 mV 时各类电极的最大响应幅值(见附录表2).通过E=U′/d换算出模拟场强与响应场强值,其中E为场强,U′为电势差,d为两个电极之间间距;对二者进行线性拟合得到各配对电极响应场强与相应场源信号模拟场强的关系(见图7),根据式(1)计算线性度,如表6所示.拟合直线斜率越大表明相同测试条件下该配对电极响应幅值越大,电极灵敏度越高.图中结果显示拟合直线斜率PANI/CF-H2SO4最小,PANI/CF-H3PO4次之,PANI/CF-HCl最大,说明PANI/CF-HCl电极具有最高的灵敏度.

图7 配对电极响应场强与模拟场强关系Fig.7 Relationship between response field strength of paired electrode and simulated field strength

表6 配对电极线性度拟合结果Tab.6 Linearity fitting results of paired electrodes

线性度γ代表配对电极对场源信号响应的准确度,γ越小表示配对电极响应准确度越高[22].计算结果表明,PANI/CF-HCl具有最小线性误差(0.111%).这说明PANI/CF-HCl既具有较高的响应灵敏度,又具有较好的响应准确度.

2.4 机理探究

电场传感器配对电极的响应机理可以通过构建等效电路分析.如图8(a)所示,将一对间距为d的电极置于具有一定场强E的海水中,把A、B两探测点之间的海水等效为具有一定内阻Ri的信号源电压Vi(Vi=dE),电极材料与海水界面等效为具有一定阻抗Z的电阻,得到等效测量电路图,如图8(b)[23-24]所示.不同电极材料与海水界面之间具有不同阻抗模型,测量A、B两点之间的电压(V0)便可反推得到存在于海水中的电场强度.

未经改性的CF电极在海水中无电化学反应发生,表面存在电荷积累,经过交流阻抗分析可等效为RC串联电路(见图8(c)).普通CF电极响应电场的电容结构由双电层构成,对电场的响应仅通过CF表面双电层结构的改变来完成.

PANI/CF电极表面有导电PANI膜生成,改变原先的纯电容性质,增加膜电容和膜电阻,其等效电路由原先的纯电容模型变为由电容部分和法拉第阻抗(Zf)并联的复合模型(见图8(d)),电场信号响应机制由原来的纯电容耦合改变为电容电阻共同作用的混合机制.PANI的引入使得CF表面含有极性较强的含氮基团,增强CF表面对溶液中带电粒子的吸附能力,形成的电容部分更稳定,由此PANI/CF电极电化学稳定性好、响应灵敏度高,这与其线性度、响应曲线、阻抗谱等结果相一致.并且从CV和阻抗结果可以看出,外电场变化时,PANI有离子掺杂和脱掺杂引起的氧化还原和电荷转移,会对复合电极电位和响应信号产生影响,因此PANI/CF电极的电场响应机理应是两者共同作用.

图8 电场传感器响应水下电场机理Fig.8 Mechanism diagram of electric field sensor responding to underwater electric field signal

3 结论

(1) 应用无机酸掺杂PANI制备的新型海洋CF复合电极,具有不同于普通CF电极的电容电阻耦合响应机制和特征氧化还原峰,离子掺杂使其拥有更大比电容,较低的低频阻抗能够更好地响应水下微弱电场.新型电极制备工艺简单便捷,快速稳定性较好,便于运输和折叠,故该新型PANI/CF复合电极有望用于开发新一代低成本、高性能柔性电场探测传感器.

(2) 3种复合电极中,PANI/CF-HCl电极具有最优的综合电场响应性能,可较为稳定地响应 1 mV/10 mHz电场信号,具有低电位漂移量(1.77 mV/d)和低线性误差(0.111%).

(3) PANI/CF电极仍有一些不足,如快速稳定性弱于Ag/AgCl电极,实验室测试与实海测试有差异等.

(4) 未来可尝试在PANI/CF电极中掺杂本身带有极性基团的有机酸.还可研究PANI/CF-HCl电极在海水中Cl-掺杂机制与电场响应机制,并与Ag/AgCl电极响应机制比较,提高电极性能.

附录见本刊网络版(xuebao.sjtu.edu.cn/article/2024/1006-2467-58-03-391.shtml)

猜你喜欢

电场电位线性
渐近线性Klein-Gordon-Maxwell系统正解的存在性
巧用对称法 妙解电场题
电位滴定法在食品安全检测中的应用
线性回归方程的求解与应用
二阶线性微分方程的解法
电场强度单个表达的比较
电镀废水处理中的氧化还原电位控制
浅谈等电位联结
电场中六个常见物理量的大小比较
感生电场与动生电场的等效性探究