渝东地区五峰组—龙马溪组沉积环境及有机质主控因素分析
——以接龙剖面为例
2024-02-26王兴田景春林小兵陈威振易定鑫
王兴,田景春,2,林小兵,陈威振,易定鑫
1.成都理工大学油气藏地质及开发工程国家重点实验室,成都 610059
2.成都理工大学沉积地质研究院,成都 610059
3.贵州省地震局,贵阳 550001
0 引言
页岩中的有机质含量是评价页岩是否具有工业开采价值的重要指标,对页岩气的富集起着决定性作用[1-2]。关于对黑色页岩中有机质含量的主控因素研究可以追溯到20世纪初,然而,国内外学者至今尚未达成明确的共识。现有的有机质富集模式主要有:“生产力模式”和“保存条件模式”[3-4],前者主要是指较高的生产力水平是有机质大量富集的主控因素[4],后者则指出水体的缺氧还原条件是有机质大量富集的主控因素[5-6]。
古沉积环境在某种程度上决定了原始生产力和氧化还原条件,而沉积地球化学元素记录了古沉积环境的演化信息和沉积特征[7-8]。所以,为了判别富有机质黑色页岩沉积时的原始生产力和氧化还原条件,页岩的主微量元素分析在地学界被广泛应用[8-12]。
四川盆地五峰组和龙马溪组广泛发育厚层富有机质页岩,生烃潜力巨大,是最具有经济效益的页岩气勘探层系[13-15]。随着勘探和研究程度的不断推进,近年来,越来越多的学者开展了四川盆地沉积学以及古环境学方面的研究,取得了丰富的研究成果[16-21]。
目前,相比涪陵等渝中地区,对渝东地区五峰组—龙马溪组的研究多集中在页岩的矿物组成、页岩气的成藏条件和资源潜力等方面[22-27]。然而,对不同沉积位置(沉降中心与沉降周缘)的黑色页岩中有机质的富集环境及富集机制研究较少。基于对重庆市武隆区接龙乡实测剖面观察,通过连续采样及相关地球化学分析,获得了剖面总有机碳(TOC)、主量元素、微量元素垂向变化特征。进一步探讨接龙剖面从五峰组到龙马溪组古环境演化,同时,在横向上与QQ1[28]井进行对比,并探讨有机质含量(TOC)的主控因素。
1 地质背景与样品选择
晚奥陶世—早志留世,受加里东运动影响,上扬子板块受到挤压,扬子周缘开始上升,形成了众多隆起[29]。上扬子板块形成了大面积低能、欠补偿、缺氧的沉积环境[30]。与此同时,上扬子地区形成了包括川南、川北和川东在内的三个泥页岩沉积的沉降中心[29](图1),正是在这种地质背景下,四川盆地在五峰组和龙马溪组时期沉积了一套富有机质黑色页岩。在研究区内,五峰组主要为一套黑色硅质页岩夹薄层硅质岩,含有多套钾质斑脱岩夹层[31-33],笔石含量丰富,呈西北向东南变厚的特征[34]。五峰组顶部观音桥组整体上以浅水沉积泥灰岩和钙质灰岩为主,厚度较薄,常常作为划分五峰组与龙马溪组的标志层。并且,观音桥组在四川盆地多条野外剖面上均被观测到,如贵州省松桃县陆地坪观音桥组(1.52 m),岩性为钙质泥岩和泥灰岩;贵州遵义董公寺的观音桥组,厚度较薄(0.35 m),以钙质泥岩为主[35];贵州毕节燕子口中沟的观音桥组,厚1.35 m,以泥质含量较低的生屑微晶灰岩为主[36]。另外,受赫南特冰期的影响,观音桥组保存了丰富的凉水腕足动物群—“赫南特贝生物群”,在全世界除澳洲以外的多个国家和地区均有报道,近年来成为了古生物学家的研究热点[37]。早志留世时期,随着间冰期的到来,海平面开始上升,上扬子地区沉积了一套岩性为黑色碳质页岩和灰黑色钙质页岩的龙马溪组页岩,局部夹少量粉砂质泥页岩薄层,相较于五峰组笔石含量有所减少[38]。
图1 四川盆地五峰组—龙马溪组泥页岩分布及剖面位置[29]Fig.1 Distribution and section location of mud shale in Wufeng Formation-Longmaxi Formation,Sichuan Basin[29]
接龙剖面在重庆市武隆区(29.594 5° N,107.895 0° E),主要位于川东沉降中心深水陆棚区。接龙剖面的五峰组和龙马溪组地层出露完整(图2),自下而上发育奥陶系上统临湘组(未见底)、五峰组(9.6 m)、观音桥层(0.5 m),以及志留系下统龙马溪组(未见顶,98.70 m)。QQ1 井位于川东沉降周缘浅水陆棚区(图1),其五峰组主要为一套黑色硅质页岩,顶部为浅水特征沉积层观音桥层,未见标志性化石,龙马溪组主要为一套富笔石的黑色页岩[28]。
图2 接龙剖面五峰组—龙马溪组综合柱状图(a)龙马溪组上部,灰色粉砂质泥岩和泥质粉砂岩;(b)龙马溪组底部,中—薄层状黑色页岩;(c)志留系与奥陶系界限,呈平行整合接触;(d)五峰组与临湘组分界,呈平行不整合接触,接触面夹4~6 cm火山灰斑脱岩夹层Fig.2 Comprehensive stratigraphic histogram of Wufeng Formation-Longmaxi Formation,Jielong section(a) upper part of Longmaxi Formation,gray silty mudstone and argillaceous siltstone;(b) bottom of Longmaxi Formation,medium-thin black shale;(c) parallel conformal contact between Silurian and Ordovician;(d) parallel unconformity between Wufeng and Linxiang Formations,with 4-6 cm interlayer of volcanic bentonite
其中,接龙剖面临湘组岩性为浅灰色薄层泥质瘤状灰岩,以黑色页岩出现作为五峰组与临湘组的分界线。五峰组—龙马溪组的岩性为黑色页岩,以炭质、硅质含量细分为不同的岩石类型,发育数套火山灰夹层(图2d)。五峰组—龙马溪组镜下生物以放射虫为主(图3a),偶见顺层发育黄铁矿,在扫描电子镜下主要为草莓状和蜂窝状(图3c,d)。接龙剖面五峰组与龙马溪组岩性差别不大,以一套厚度为0.5 m的观音桥组灰黑色钙质泥岩为界线(图2c),观音桥组在野外通过层厚变化以及滴稀盐酸微弱冒泡来识别。将观音桥组野外样品进行磨片,可以观察到浅水生物海百合碎片(图3b)。接龙剖面龙马溪组底部为中—薄层状黑色页岩(图2b),上部为灰色粉砂质泥岩(图2a),顶部风化严重,未见顶。为了对接龙剖面五峰组—龙马溪组进行精细的研究,根据岩性和地层厚度变化划分了小层并进行连续采样,样品均避开火山灰层、方解石脉。其中,五峰组12 件,观音桥组2件、龙马溪25件,五峰组和龙马溪组为硅质粉砂质页岩,观音桥组为钙质页岩。
图3 接龙剖面五峰组—龙马溪组黑色页岩典型照片(a)五峰组,黑色页岩,正交偏光,放射虫成层分布;(b)观音桥组,灰黑色泥灰岩,正交偏光,海百合碎片;(c)YJL-6,五峰组,蜂窝状黄铁矿;(d)YJL-31,龙马溪组,草莓状黄铁矿Fig.3 Photographs of typical Wufeng Formation-Longmaxi Formation black shale in Jielong section(a) Wufeng Formation,black shale,orthogonal polarized light,radiolarian stratified distribution;(b) Guanyinqiao Formation,gray-black marl,orthogonal polarized light,crinoid fragments;(c) YjL-6,Wufeng Formation,cellular pyrite;(d) YJL-31,Longmaxi Formation,strawberry pyrite
2 分析测试方法
所有样品的地球化学分析测试在成都理工大学油气藏地质及开发中心国家重点实验室完成。TOC测定依据标准(GB/T 19145—2022)使用LECO SC-632碳硫测定分析仪进行检测。操作步骤如下:经去离子水多次超声波洗净的样品烘干后,用玛瑙研钵人工磨碎至80 目。称取100 mg 的样品用5%的HCl浸泡24 h,去掉无机碳,然后测试有机碳和硫含量。主量元素采用XRF仪器,进行X射线荧光光谱分析,检测温度为23 ℃,相对湿度为20%。操作步骤如下:称取1 g的页岩样品置于干净的陶瓷坩埚中,并称重坩埚、样品和坩埚+样品的重量并记录,以便测定后续煅烧过程中样品的烧失量。将坩埚放入马沸炉中920 ℃煅烧3~4 h去除有机质。取出坩埚快速置于干燥皿中冷却,随后常温下称量坩埚+样品和坩埚的重量。在假设坩埚质量不变的条件下计算煅烧过程中的烧失量,以便于后续的矫正。称取0.5 g 左右烧失后的粉末样品,加入样品质量8 倍的无水四硼酸锂(Li2B4O7),混合均匀,放置于XRF 专用铂金坩埚中,最后加入1 滴2%LiBr-1%NH4I 混合助溶剂于混合样品中。将金坩埚放置于Analymate-V8C型4头高频加热熔样机上1 150 ℃熔融制成玻璃片,保存后等待测试。最后,在Rigaku 100e 型波长色散型X 荧光光谱仪(XRF)上进行测试。微量元素采用PE Elan 6000型电感耦合等离子质谱仪(ICP-MS)进行测试分析,检测温度为25 ℃,相对湿度为30%。操作步骤如下:称取烘干恒重的0.5 g 样品粉末于陶瓷坩埚中,放入700 ℃的高温炉中煅烧3~4 h 去除有机质。称取0.37~0.45 mg 烧失后的样品放入干净的聚四氟乙烯密闭溶样瓶中,精确记录每个样品的称量结果,滴入3 mL HNO3、3 mL HF 和1.5 mL HClO4溶解样品,超声1 h 待样品混合均匀后,放置于100 ℃低温电热板上保温3 d 后蒸干。蒸干的样品中加入1∶1 纯化HNO3和HF,加盖旋紧溶样瓶并套上钢套,放入高压釜中190 ℃保温48 h。待溶样器冷却,卸下钢套,将溶样瓶放置于电热板上140 ℃将溶液蒸至湿盐状,然后缓慢加入4 mL 4NHNO3,再次放入高压釜中170 ℃恒温4 h。待溶样瓶冷却,将溶解样用2%的HNO3稀释干净,最后将样品稀释2 000倍,加入一倍的Rh内标来矫正信号飘逸。溶解稀释后的样品在PE Elan 6000型电感耦合等离子质谱仪(ICP-MS)上进行测试分析,分析误差小于5%。
3 地球化学特征
3.1 TOC含量
接龙剖面五峰组—龙马溪组39个样品的TOC含量1.71%~5.85%,平均为3.79%。其中,五峰组的TOC 含量为2.38%~5.84%,平均为3.81%。龙马溪组的TOC含量为1.71%~5.85%,平均为3.78%。
垂向上,接龙剖面在五峰组顶部接近观音桥组TOC 含量出现明显下降,并在龙马溪时期含量快速升高,随后在龙马溪组中上部降低(图3)。横向上,通过对李艳芳[28]文章中QQ1井的TOC含量进行分析发现,QQ1井的TOC含量要小于接龙剖面。不过,整体而言,接龙剖面与QQ1 井的TOC 含量均值大于2%,这与其他剖面五峰组—龙马溪组表现一致,属于富有机质页岩段。
3.2 常量元素
SiO2、Al2O3和CaO元素是接龙剖面五峰组—龙马溪组黑色页岩的主要成分。可以与石英、黏土矿物和碳酸盐三种主要矿物组分相对应。
不同常量元素含量在不同层段表现出一定的波动性(图3),五峰组—龙马溪组中SiO2的含量占主体,其中五峰组含量介于63.9%~86.8%,平均为82.9%;观音桥段含量介于44.4%~44.6%,平均为44.5%;龙马溪组含量介于71.9%~85.4%,平均为78.5%(五峰组>龙马溪组>观音桥组)。其次为Al2O3,五峰组含量介于2.8%~16.3%,平均为6.0%;观音桥段含量介于4.9%~7.6%,平均为6.3%,龙马溪组含量介于6.0%~10.5%,平均为8.8%(五峰组>龙马溪组>观音桥组)。CaO、MgO含量在五峰组和龙马溪组页岩中较低,介于0.3%~1.1%,而观音桥组泥灰岩CaO 含量介于11.0%~17.8%,MgO 含量介于7.0%~7.4%,这主要受岩性的影响。除此之外,含量最高的是Fe2O3,五峰组含量介于0.8%~3.5%,平均为1.5%,观音桥段含量介于3.6%~9.8%,龙马溪组含量介于0.7%~6.9%,平均为2.1%。其次是Na2O,龙马溪组含量为0.2%~0.9%,平均为0.4%,观音桥段为0.7%,五峰组含量介于0.1%~1.1%,平均为0.6%。
接龙剖面常量元素整体变化不大,在五峰组沉积晚期,与陆源碎屑和黏土矿物相关的Al2O3、K2O、P、Ti含量降低,与化学和生物成因相关的CaO、MgO、Mn含量升高,并在龙马溪组沉积早期快速回弹。
3.3 微量元素
由于微量元素通常在成岩过程中具有相对稳定的特性,可以利用微量元素的变化反映沉积和构造环境[39]。为了消除陆源成分的影响,利用Al元素(陆源且稳定),标准化后得到X/Al(X为样品中某微量元素的含量,Al 为样品中Al 元素的含量),以便准确地判定古沉积环境。同时以X(标)/Al(标)(X为后太古代澳大利亚平均页岩PAAS[40]中某微量元素的含量,Al为PAAS中Al元素的含量)作为标准进行分析。
接龙剖面黑色页岩的微量元素的垂向变化特征如图4所示,与陆源相关的Zr、Y、Ga、Sr、Rb等变化不大,表现出相对富集或亏损。V、Cr、Ni等氧化还原敏感元素变化相同,在龙马溪组中上部与页岩平均值相近,而在五峰组和龙马溪组底部强烈富集。在观音桥段富集程度表现为相对亏损或富集。
图4 接龙剖面TOC 含量、常量元素和微量元素垂向变化特征Fig.4 Vertical variation of TOC content,major elements and microelement in Jielong section
4 沉积环境分析
4.1 陆源输入
陆源碎屑的输入可能对水体中有机质产生稀释作用,是影响有机质富集的重要因素[41-42]。沉积物中的元素Al、Zr、Ti 主要来自陆源碎屑,由于不易遭受成岩作用以及风化作用的影响,常被用于指示海相沉积岩中的陆源输入情况,Al、Zr与Ti含量可以作为陆源输入的重要指标[43]。
接龙剖面中陆源输入指标Al、Zr、Ti 在五峰组变化幅度比较大,在中部出现明显波动(图5),表明陆源物质输入在五峰组沉积时期供给变化比较大,这可能是奥陶世晚期频繁的构造运动造成的[31-32]。随后,进入观音桥组沉积时期,陆源输入指标Al、Zr、Ti含量出现明显的下降,可能是由于全球冰期造成海平面的下降,从而使剖面点远离古隆起剥蚀区,导致了陆源碎屑在这一时期输入减少。之后,Al、Zr、Ti含量在龙马溪组底部快速提升,表明在冰期结束后,海平面上升,陆源碎屑供给开始恢复到五峰组沉积时期。以上这些陆源输入指标的变化特征也可以在QQ1井观察到(图6)。
图5 接龙剖面陆源输入指标、氧化还原指标和古生产力指标垂向变化特征Fig.5 Vertical variation of continental input,redox indices and paleoproduction in Jielong section
图6 QQ1 井陆源输入指标、氧化还原指标和古生产力指标垂向变化特征[28]Fig.6 Vertical variation of continental input,redox and paleoproduction in indices well QQ1[28]
4.2 氧化还原条件
微量元素V、Ni、Cr等是氧化还原敏感性元素,前人利用相关元素在不同地区都进行过相关时期水体氧化还原条件研究。采用V/Cr 与V/(V+Ni)作为氧化还原性的替代指标。通常V/Cr>4.25 指示强烈缺氧环境,2<V/Cr<4.25 指示贫氧环境,V/Cr<2 指示氧化环境[44]。V/(V+Ni)<0.46 为氧化环境,0.46~0.57 为弱氧化环境,0.57~0.83 为缺氧环境,0.83~1 为静海环境[45]。
根据元素分析结果(表1),接龙剖面五峰组V/(V+Ni)比值介于0.72~0.93,平均为0.85,五峰组V/Cr比值介于1.69~7.18,平均为3.75,指示一个缺氧的环境。观音桥组V/Cr比值介于1.81~3.30,平均为2.57,V/(V+Ni)比值介于0.35~0.69,平均为0.51,指示一个弱氧化的环境。龙马溪组V/Cr 比值介于2.50~7.41,平均为4.60,V/(V+Ni)比值介于0.73~0.93,平均为0.86,指示一个还原的环境。
表1 接龙剖面与QQ1井氧化还原性指标对比表[28]Table 1 Comparison of oxidation and reduction indices between Jielong section and well QQ1[28]
除此之外,在纵向上,接龙剖面五峰组—龙马溪组水体的氧化还原条件(图5)表现也有所不同。在五峰组沉积时期V/Cr、V/(V+Ni)比值变化较大,指示氧化还原以缺氧环境为主,偶尔有富氧的环境存在,在五峰组顶部V/Cr、V/(V+Ni)比值有所减小,在观音桥组时期减至最小,指示弱氧化环境。这可能是受赫南特冰期的影响,全球的海平面下降,导致底部水体氧含量有所增加。随后,在龙马溪组底部,V/Cr、V/(V+Ni)比值开始增大,接着趋于稳定,这表明水体的还原程度在这一时期有所增加。这可能是由于早志留世全球冰期的结束,全球海平面开始上升,水体加深造成的。
另外,水体的氧化还原环境除了在同一个剖面的不同层位上存在差异,在不同剖面之间也有变化。位于川东沉降边缘的QQ1井在五峰组—龙马溪组氧化还原指标V/Cr、V/(V+Ni)在相同层位的变化特征与接龙剖面表现出一致性(图6),但是在相同层位的V/Cr、V/(V+Ni)数值明显低于位于川东沉降中心的接龙剖面(表1)。这可能是因为不同的剖面位置,其沉积水体的深度不同导致氧化还原性有所差异。水体越深,还原性越强[28]。这说明水体深度和沉积位置也是影响氧化还原条件重要因素。
4.3 古生产力
海洋生产力是海洋生态系统的基础,是影响有机质富集的主要因素之一[45],可以用来指示古生产力的地球化学指标是P 元素[46-47]。另外,在判别古生产力水平时通常用P/Al 或P/Ti去除来自陆源碎屑的影响,其值更能代表古海洋的初级生产力[21]。
现代海洋研究证实,海底沉积物中Ba 的积累速率与生物生产力具有正相关性[45]。虽然非生物Ba在海洋中含量非常少,为了排除这类Ba影响,采用在学术界广泛被采用的古生产力指标生物钡Ba(xs)计算方式[48]。
式中:Bay,Aly为样品测试值;(Ba/Al)pass为后太古宙澳大利亚页岩中两元素的比值,取值为0.007 7[39]。
接龙剖面古生产力指标Ba(xs)、P/Al 在五峰组底部表现为较高值(图5),随后在五峰组中上部有所下降,指示古生产力的下降。总体来看,五峰组Ba(xs)、P/Al变化范围最大,这可能是由于五峰组沉积时期强烈的环境变化以及火山活动导致深水相的腕足、浮游笔石受到重创[33-34],从而古生产力逐渐下降。另外,我们观察到观音桥组的古生产力指标Ba(xs)、P/Al出现较大的差距,P/Al 比值在观音桥组出现最大值,指示较高的生产力,这与QQ1 井分析结果以及生物大灭绝的地质背景相悖[37]。考虑到在镜下观察到了海百合碎片,而生物体中的Ba、P可能对这一指标有影响[46],故在之后的有机质富集的主控因素分析中,剔除观音桥的两个样品,这里仅做展示。Ba(xs)、P/Al 值在龙马溪组早期逐渐增大,指示古生产力水平的恢复。这可能是在赫南特冰期结束后,气温回暖,生物复苏导致的古生产力水平的提高,从QQ1 井的古生产力指标中(图6)也能够非常明显地观察到。
接龙剖面和QQ1 井的古生产力判断指标Ba(xs)、P/Al(×10-4)具体值见表2。接龙剖面五峰组Ba(xs)含量介于(677.0~1 908.0)×10-6,平均为1 073.1×10-6;五峰组P/Al 值介于(81.4~160.4)×10-4,平均为116.3×10-4。龙马溪组Ba(xs)含量介于(1 427.9~2 255.0)×10-6,平均为1 741.6×10-6;龙马溪组P/Al 值介于(99.2~141.6)×10-4,平均为119.7×10-4。表明接龙剖面五峰组和龙马溪组都具有良好的古生产力条件,但是接龙剖面相关指标明显高于沉降周缘的QQ1 井,说明接龙剖面古生产力比QQ1井高。考虑到五峰组—龙马组沉积时期大量的火山活动,而火山灰为笔石以及浮游生物提供大量的营养物质[33-34],促进古生产力的增长,我们认为这可能是因为接龙剖面更靠近川中古陆,有更多的营养物质使得生物在此繁衍,导致接龙剖面的古生产力比QQ1井高。这与野外接龙剖面观察到火山灰夹层,而在QQ1 井没有发育火山灰这一现象相符。
表2 接龙剖面与QQ1井古生产力对比表[28]Table 2 Comparison of paleoproductivity between Jielong section and well QQ1[28]
5 有机质富集主控因素及富集模式
5.1 有机质富集主控因素
前人认为黑色页岩中有机质富集是一个复杂的物理化学过程。扬子地区五峰组—龙马溪组的控制因素并不单一,首先,陆源碎屑输入会对沉积物中有机质的含量起到稀释作用[41-42];其次,良好的生产力水平会为有机质的富集提供良好的基础[13];最后,有机质后期保存条件也很重要,缺氧—还原的环境更利于有机质的保存[14-15]。选取可能影响接龙剖面五峰组和龙马溪组有机质富集的三个因素(陆源输入、氧化还原条件、古生产力)与TOC 含量进行相关性分析,研究五峰组—龙马溪组的有机质富集主控因素。
根据接龙剖面陆源输入指标Al、Zr 与TOC 含量相关性分析图(图7a,b),五峰组Al、Zr与TOC的相关系数R2分别为0.13、0.08;龙马溪组Al、Zr与TOC的相关系数R2分别为0.08、0.17;R2远小于1,表现出极差的相关性,表明无论是在五峰组还是龙马溪组,接龙剖面陆源碎屑输入含量对有机质富集几乎没有影响。从接龙剖面氧化还原指标V/Cr、V/(V+Ni)与TOC 含量相关性分析图(图7c,d)来看,五峰组V/Cr、V/(V+Ni)与TOC的相关系数R2分别为0.76、0.86;龙马溪组V/Cr、V/(V+Ni)与TOC 的相关系数R2分别为0.54、0.47;表现出较强的相关性,说明氧化还原条件是控制接龙剖面五峰组和龙马溪组有机质富集的重要因素。另外,同一指标与TOC 的相关系数在五峰组均大于龙马溪组,说明五峰组有机质的富集相较于龙马溪组有机质的富集更依赖于氧化还原条件。接龙剖面古生产力指标Ba(xs)、P/Al 与TOC 含量相关性分析图(图7e,f)显示,五峰组Ba(xs)、P/Al与TOC的相关系数R2分别为0.02、0.003 7;龙马溪组Ba(xs)、P/Al与TOC的相关系数R2分别为0.16、0.002 5。两者的R2均远小于1,没有表现出良好的相关性,表明在接龙剖面五峰组和龙马溪组,古生力对有机质的富集影响较小。从纵向上我们也可得出相关结论(图5),虽然五峰组底部、龙马溪组上部生产力水平较高,但是对应的TOC含量却较小,进一步说明,两者不存在良好的相关性。虽然生产力水平不是决定接龙剖面五峰组和龙马溪组有机质富集的主要因素,但我们必须承认,较高的生产力水平为有机质富集提供了良好的物质基础。当然,最后起决定性作用的因素是沉积物保存的氧化还原条件。李艳芳[28]对QQ1 井进行地化数据分析后也证明QQ1井TOC含量与古氧化还原环境条件有正相关性与古生产力以及陆源碎屑输入相关性不大,不再赘述。
图7 接龙剖面TOC 含量与陆源碎屑输入指标、氧化还原指标、古生产力指标相关性图Fig.7 Correlation between TOC content and continental input,redox indices and paleoproduction in Jielong section
综上所述,接龙剖面五峰组和龙马溪组页岩有机质含量取决于水体的氧化还原条件,属于“保存条件控制型”。前文对接龙剖面与QQ1 井的TOC 含量分析,发现五峰组和接龙组TOC 含量整体高于QQ1井,在同一时期,受控于地形,位于沉降中心深水陆棚区的接龙剖面水体还原性比位于沉降周缘浅水陆棚区的QQ1井要高。
5.2 有机质富集模式
根据TOC 含量与陆源碎屑输入、氧化还原环境以及古生产力条件的相关性分析,明确了五峰组和龙马溪组有机质的富集得益于良好的保存条件。但有机质富集是一个复杂的过程,根据对接龙剖面五峰组—龙马溪组的沉积环境研究并结合前人已有的观点,对五峰组和龙马溪组的有机质富集模式进行探讨。
受加里东运动影响,五峰组沉积期间黔中隆起、川中隆起、雪峰山隆起相继升高[44]。由于频繁的构造活动和与之相伴的大规模火山运动,五峰组沉积时期沉积了多套钾质斑脱岩夹层[31-34]。火山灰中夹带着丰富的营养物质,有利于笔石和浮游生物繁盛,从而在五峰组沉积时期海洋拥有较高的古生产力,这为有机质富集提供了基础。当然,频繁的构造运动导致陆源碎屑供给出现了频繁的变化,这可能对沉积物中有机质含量起到稀释作用。另外,构造运动使得中上扬子地区转化为障壁性的海盆,盆地水体流通性减弱,形成强滞留水体环境[49](图8a)。此时的障壁性海域特征在还原的水体条件有利于有机质的保存,使得五峰组沉积期可以形成一套优质的烃源岩。五峰组沉积晚期,冈瓦纳大陆冰川的发育事件[34],全球海平面大规模下降,海水底部的氧含量有所增加。随后,出现了最早的一次生物大灭绝事件,种一级的灭绝率达到85%[37]。海洋生产力有所下降,使得有机质的供给量在观音桥组沉积期低于龙马溪组沉积期。此外,海平面的下降导致了盆地远离大陆剥蚀区,陆源碎屑供给的减少,观音桥时期形成了一套分布范围广的薄层钙质泥岩和泥灰岩(图8b)。进入早志留世,由于冰川融化引起海平面的上升,扬子盆地中海水的流通性增加[50-52]。气候出现回暖,生物复苏为海洋提供了高的生产力,龙马溪组沉积时期海洋生产力复苏。另外,尽管海平面上升导致海水流通性增加,表层海水的含氧量增加,有利于龙马溪组生产力的恢复。但是海平面上升使得沉积水体加深,沉积中心的底部仍旧处于静海相的还原环境(图8c),这为有机质的保存提供了良好的条件。因此,龙马溪组沉积时期形成了一套富有机质页岩。
图8 五峰组—龙马溪组有机质富集模式(据文献[28])(a)五峰组时期;(b)观音桥时期;(c)龙马溪组时期Fig.8 Organic matter enrichment pattern of Wufeng Formation-Longmaxi Formation (after reference [28])(a) Wufeng Formation period;(b) Guanyinqiao period;(c) Longmaxi Formation period
综上所述,五峰组与龙马溪组有机质富集的主控因素是水体的氧化还原条件,缺氧—还原环境有利于有机质的保存。但是两套烃源岩保存条件还是有所差别,五峰组沉积期的强滞留缺氧环境是由障壁性海盆造成的,而龙马溪组沉积期则主要是由于海平面上升而形成的底部静海相的还原环境。并且处于深水地区的接龙剖面有机质的“保护作用”要比QQ1 井的保护作用要好,导致接龙剖面的TOC 含量要高于QQ1井。
6 结论
(1)五峰组沉积时期,渝东地区海水拥有较高的生产力,受周缘构造运动的影响,陆源输入频繁,发育强滞留的缺氧环境。
(2)观音桥组沉积时期,受赫南特冰期的影响,生物大灭绝事件导致古生产力降低,同时海平面下降,底部水体含氧量增加,陆源碎屑输入减少,渝东地区发育一套薄层钙质页岩和泥灰岩。
(3)龙马溪组沉积时期,生产力快速复苏,海平面升高使得海盆向物源区靠近,陆源输入逐渐恢复,同时海侵使得水体加深,发育有利于有机质保存的还原环境。
(4)黑色页岩中有机质富集是一个复杂的物理化学过程,前人认为主要受控于陆源输入、古生产力和氧化还原条件。而渝东地区接龙剖面和QQ1井五峰组—龙马溪组有机质富集受陆源输入以及古生产力影响较小,主要受控于沉积水体的氧化还原环境。并且同一时期位于沉降中心深水陆棚区的接龙剖面保存条件要优于沉降周缘浅水陆棚区的QQ1井。