APP下载

渤海湾盆地南堡2-1 区馆陶组辫状河储层构型精细表征

2024-02-26余成林徐波曾诚李彦泽

沉积学报 2024年1期
关键词:心滩南堡辫状河

余成林,徐波,曾诚,李彦泽

中国石油冀东油田分公司南堡作业区,河北唐山 063200

0 引言

新近系馆陶组巨厚的辫状河储层是渤海湾盆地南堡2-1 区块重要的含油层系[1],开发效益较好。然而,随着油田开发的持续推进,区块逐渐暴露出单井油水关系复杂、动静矛盾突出等问题。辫状河厚层砂体内部结构的复杂性是影响边底水不均匀推进、水淹程度迥异和开发效果大幅下降最主要的地质因素[2-4]。因此,基于Miall 河流相构型分析的方法和技术,开展泛连通的巨厚辫状河复合砂体内部不同级次储层构成单元的几何形态大小及其相互关系的精细表征,无疑是揭示储层内部渗流屏障分布规律和提高油田开发效果的有效手段[5-6]。国内外学者辫状河储层砂体的内部结构开展了现代沉积[7]、野外露头[8-9]和特定油田[10-12]的研究工作,在辫状河构型模式和定量关系方面取得了一些成果和认识,然而地下辫状河储层构型划分方案与配套识别技术相对不成熟,尤其是针对叠置型富砂的单一成因四级构型单元精细解剖案例较少。针对南堡2-1 区,受地震分辨率和钻井空间分布不均的影响,储层精细表征难度很大,导致储层结构认识不清,严重影响了油田注水开发效果,研究以南堡2-1 区块主力开发层系馆陶组Ⅱ油组6 小层(NgⅡ-6)砂体为解剖对象,综合应用工区的岩心、测井以及三维地震资料,开展辫状河储层砂体构型单井、剖面和平面精细表征,结合地震属性和分频RGB 融合技术深入认识储层砂体平面结构,为油田开发方案提供直接的地质依据,助力油田开发效果的稳步提升,同时探索适合海上稀井网条件下辫状河储层构型精细表征的配套方法技术。

1 研究区概况

南堡凹陷位于渤海湾盆地黄骅坳陷北部,是在华北地台基底上经历中新生代构造运动发育的典型北断南超的箕状凹陷[13](图1a),发育沙三段、沙二段和沙一段三套优质烃源岩,沙三段、沙一段—东二下段和明化镇组下段三套区域性盖层,形成三套生储盖组合[13-14]。南堡2号构造位于林雀次凹与曹妃甸次凹间的中央背斜构造带,属于凹陷南缘沙垒田凸起供源的河流三角洲沉积体系[15],成藏条件优越,是南堡凹陷最有利的油气富集区[1]。南堡2-1区块处于南堡2 号构造南部,为一被断层复杂化的背斜构造,馆陶组是区块的主力开发目的层,地层厚300~800 m,与下伏东营组地层呈角度不整合接触,为一套富砂的辫状河沉积(图1b),其中馆陶组Ⅱ油组厚200~300 m,以厚层块状砂岩为主,储层物性较好,馆陶组Ⅱ油组6 小层平均孔隙度为23.2%,平均渗透率为218.0×10-3µm2,为高孔高渗储层。

图1 南堡2 号区域构造及研究区位置图及综合柱状图[13](a)研究区位置图;(b)综合柱状图Fig.1 Regional structure and comprehensive stratigraphic column of the Nanpu2 block[13]

南堡2-1 区块共有60 余口井钻遇馆陶组含油层系,其中开发层系为馆陶组的油井15口,目前平均单井含水率达83%。长期的勘探开发过程中,南堡2-1区积累了丰富的岩心、测井、三维地震资料,共有6口取心井,在馆陶组取心达200 m,并且具备全套的常规测井曲线。研究区叠后时间偏移三维地震资料覆盖面积为22 km2,有效频宽为8~29 Hz,主频约为18 Hz(图2),所有这些资料为开展以四级构型单元为核心的储层精细表征奠定了基础。

图2 南堡2-1 区馆陶组地震资料频谱分析图Fig.2 Spectrum analysis of seismic data in the Guantao Formation of the Nanpu2-1 block

2 构型单元类型及其基本特征

南堡2-1 区块NgⅡ油组为一套近源富砂辫状河沉积,可以划分为心滩、辫状河道、天然堤、决口扇和泛滥平原等沉积微相,其中主要的储层沉积微相是河床亚相的心滩和辫状河道。依据成因类型,参考Miall 河流相构型级次方案[16],研究区可以划分为三种四级构型单元(图3),心滩和辫状河道两种储层构型单元,泛滥平原、天然堤和决口扇等沉积微相统一划分为溢岸非储层构型单元。

图3 南堡2-1 区馆陶组典型辫状河构型单元识别图版(a)心滩;(b)辫状河道;(c)溢岸Fig.3 Identification of typical braided river architecture units in the Guantao Formation of the Nanpu2-1 block

1)心滩

心滩由沉积物在对称螺旋形横向环流作用下加积形成,一般粒度较粗[17],是南堡2-1 区馆陶组最主要的四级储层构型单元。岩心观察表明,心滩岩性以中—粗砂岩为主,底部夹厚度不等的砂砾岩、细砂岩和粉砂岩,总体上形成向上变细的正旋回。发育大型槽状交错层理,板状交错层理和块状层理,底界面常为明显的冲刷面。单期心滩厚5~10 m,NgⅡ-6小层内部多期心滩叠置厚度12~20 m,自然伽马曲线表现为钟形或箱形特征,储层物性很好,孔隙度介于20%~30%,渗透率介于(100~400)×10-3µm2,是区块物性最好的储集单元(图3a)。

2)辫状河道

辫状河水浅流急,侧向迁移快,砂质辫状河道沉积物砾石含量较低[18],南堡2-1 区馆陶组辫状河岩性以细砂岩、中细砂岩为主,局部砂体底部见河道滞留成因的底砾沉积,与下部砾岩呈冲刷突变接触,顶部随着水动力减弱沉积了薄层的粉砂岩或泥岩沉积,形成了典型的正旋回粒度结构。自然伽马曲线表现为钟形结构,单个砂体厚度较心滩薄,一般为5~8 m,NgⅡ-6 小层内部多期辫状河道叠置厚度为12~16 m。砂体内部发育块状层理及槽状交错层理。垂向上储层物性表现为较强的层内非均质性,孔隙度介于10%~20%,渗透率介于(50~100)×10-3µm2(图3b)。

3)溢岸

溢岸沉积是指涨水期洪水携带细粒沉积物质溢出河床在堤岸和堤岸后边广大平原上形成的细粒沉积物质,其中辫状河堤岸沉积范围十分有限,难以与泛滥平原截然分开[19]。溢岸沉积以泥岩和粉砂岩沉积为主,局部夹薄层的细砂岩,平面上分布在河床沉积的两侧。发育反映低水动力条件的波状层理、水平层理。单一溢岸构型单元厚6~10 m,自然伽马曲线表现为低幅指形或靠近泥岩基线,有效孔隙度和渗透率极低,不能形成优质的储层(图3c)。

3 储层构型样式

储层构型样式是指不同成因类型的储层砂体在垂向上的组合关系,四级构型单元一般对应于油田开发层系划分中的单砂体级别,不同四级构型单元纵横向上的不同组合样式形成了五级构型单元,即河道充填复合砂体[20]。利用局部密井网区的岩心和测井资料,可以总结南堡2-1 区NgⅡ油组典型的四级储层构型样式,包括垂向叠加样式和侧向叠置样式,从而为井间构型单元的预测提供模式指导。

3.1 构型单元的垂向叠置样式

通过对研究区所有井四级构型单元解释,南堡2-1 区NgⅡ油组发育三种类型的构型单元垂向叠置样式。

1)心滩—心滩叠置

心滩—心滩叠加样式为两期心滩在垂向上叠置形成一个向上变细的复合心滩,总厚度达20 m,自然伽马曲线与电阻率测井显示为箱形或者钟形。两期心滩厚度差别不大,之间被薄层泥岩分隔,自然伽马曲线具有明显回返,该界面对应于四级构型界面。单一心滩底部岩性较粗,以砂砾岩为主,向上渐变为含砾砂岩或细砂岩,表现下粗上细的单一正旋回(图4a)。

图4 南堡2-1 区NgⅡ-6 小层辫状河储层构型单元垂向叠置样式(a)心滩—心滩叠置;(b)辫状河道—心滩叠置;(c)溢岸—心滩叠置Fig.4 Vertical superposition pattern of braided river architecture units of NgII-6 in the Nanpu2-1 block

2)辫状河道—心滩叠置

辫状河道—心滩叠加样式表现为晚期的辫状河道叠置在早期形成的心滩之上,由于后期辫状河道侧向迁移、在早期的心滩坝上流动所致。上部辫状河道的厚度小于早期心滩,测井曲线表现为钟形与箱形的垂向叠加。心滩岩性相对较细,分选性好,测井曲线表现为箱形,而辫状河道底部岩性较粗,局部可见滞留沉积底砾岩,电性曲线上表现为下粗上细的钟形。辫状河道底部的砂砾岩与心滩顶部的细砂岩之间存在较大的岩性差异,自然伽马曲线、电阻率曲线都有明显的响应(图4b)。

3)溢岸—心滩叠置

溢岸—心滩叠置方式是以泥岩为主的溢岸细粒沉积直接覆盖在心滩之上,二者为突变的岩性接触。由于心滩岩性以砂岩为主,分选较好,且具有一定的厚度,电性曲线表现为高幅箱形,而溢岸岩性以泥岩和泥质粉砂岩为主,电性曲线大幅回返,表明垂向上水动力由强变弱。构型的界面为砂泥岩岩性界面(图4c)。

对南堡2-1 区NgⅡ油组所有井四级构型单元垂向叠加类型统计表明,心滩为最主要的构型单元,垂向上分别与辫状河道、后期心滩以及溢岸沉积叠置,形成复合的河道充填沉积,即五级构型单元。其分界面主要为岩性界面,在电性曲线和岩心上能够较为准确地识别,同时作为地下流体垂向渗流的重要屏障,对于油田注水开发具有重要的影响。

3.2 构型单元的侧向叠置样式

构型单元的侧向叠置样式是指同一时期形成的毗邻的不同成因类型构型单元组合及接触关系[21]。应用井距约为200 m 的密井网资料开展储层四级构型单元的侧向叠置样式研究,总结出以下三种典型的样式类型:即多期心滩顺流前积叠覆型、辫状河道下切心滩型和心滩分流辫状河道型(图5)。

图5 南堡2-1 区NgⅡ-6 小层辫状河构型单元侧向叠置样式(a)心滩顺流前积叠覆型;(b)辫状河道下切心滩型;(c)心滩分流辫状河道型Fig.5 Lateral splicing types of braided river architecture units from NgII-6 in the Nanpu2-1 block

1)心滩顺流前积叠覆型

该类四级构型单元的侧向叠置样式是辫状河床内部由于顺流加积作用,多个心滩顺流向发生前积叠置而成(图5a)。A6 井和A8 井的自然伽马和电阻率都为单一的正旋回或箱形测井响应,为单一心滩沉积,厚10~12 m,而中间注水A7井表现为两期正旋回的测井相组合,表明两期心滩的垂向叠置,依据自然伽马曲线的回返位置推测两期构型单元的界面位于井深2 102 m处。以A6井为中心的心滩和以A8井为中心的心滩侧向叠覆在A7井处,后者形成的时间晚于前者。两个单一的心滩通过顺流前积作用形成了一个复合心滩的五级构型单元,随着A7井注水时间的推移,构型界面的遮挡作用逐渐体现出来,解释了A6 井主要下部水淹和A8 井主要上部水淹的差异现象。

2)辫状河道下切心滩型

该类四级构型单元的侧向叠置样式是指两个心滩被同期活动的辫状河道分隔,剖面上形成心滩—辫状河道—心滩的接触关系(图5b)。A10井为一套典型的正旋回辫状河道沉积,自然伽马和电阻率曲线为钟形,砂岩较薄,河道上部细粒沉积保存完好。两侧的A9 和A11 井则为单一的心滩沉积,测井曲线表现为箱形,砂体较厚,侧向上形成了厚—薄—厚的砂岩结构。由于辫状河道与心滩在岩性和物性上存在较大的差异,因此两侧的心滩砂体连通性较差。若中间A10 井后期转注,两侧的A9 井和A11 井受效程度较差。

3)心滩分流辫状河道型

该类四级构型单元的侧向叠置表现为辫状河道—心滩—辫状河道的接触关系,是研究区常见的一种侧向储层构型单元结构。在辫状河床中,水流携带上游和两岸冲刷侵蚀的沉积物在河床中部沉积,形成心滩,由于沉积物的快速堆积,心滩逐渐加厚,在低水位时期露出水面,将原有的河道一分为二,在心滩的两侧形成辫状河道沉积。心滩沉积物一般较粗,厚度较大,而辫状河道由于水流较强,沉积物沉降慢,砂岩厚度较薄,河道上部可以被后期的泥岩充填,形成典型的二元结构。如图5c所示,A13井为一套厚约10 m的心滩沉积,粒度粗,电性曲线上表现为两期复合正韵律的叠置。两侧的A12 和A14 井则是自然伽马和电阻率曲线为钟形的辫状河道沉积,砂岩较薄,上部泥岩发育,侧向上形成了薄—厚—薄的砂岩结构,在该种侧向叠置样式下,砂体底部的水驱效果较为明显,剩余油主要集中在心滩砂体的顶部。

4 构型单元的平面分布预测

南堡2-1区NgⅡ油组辫状河砂体连片分布,单井砂体钻遇率达80%以上,但生产动态显示同一阶段实施和投产的生产井水淹状况存在差异,平面上表现为处于同一泛连通砂体的一注多采井组中,部分油井出现中强水淹,而部分井注水未受效,纵向上表现为小层内厚砂体顶部和底部的水洗程度差异大,因此揭示泛连通储层砂体内部结构十分复杂。密井网区钻井揭示单一成因储层砂体即四级构型单元一般厚5~10 m,远低于Widess 准则确定的工区三维地震资料的垂向分辨率,但是,在小于地震调谐厚度时,地震反射波振幅与储层砂体厚度成正比关系[22]。由于辫状河心滩中心砂体厚,向四周减薄直至尖灭,因此可以依据振幅的平面变化来确定心滩的平面分布。同时基于平面上不同四级构型单元规模不同,厚度各异,可以应用分频RGB融合的技术,能够更加有效地探测不同厚度的四级构型单元的边界,揭示四级构型单元的平面结构关系[23],为开发井网的优化提供直接的地质依据。依据南堡2-1 区NgⅡ-6 小层短时窗多道均方根振幅和分频RGB 融合地层切片,在已有钻井构型单元解释的标定下,可以实现该小层四级构型单元分布范围及构型单元边界的精确解释。

NgⅡ-6 小层通过井震标定,在地震上表现为一个波峰同相轴,提取NgⅡ-6 小层20 Hz 分频地震均方根振幅属性,研究区东部和西部振幅高值区呈连片分布,表明储层平面各向异性相对较弱,在中部振幅高值区呈土豆状较为分散,构型单元类型变复杂,经过井标定红色高值区主要是心滩发育的部位,蓝绿色主要是辫状河道发育区(图6a)。分频RGB 融合技术系统将岩性—厚度—构型的关系耦合起来[24],选取10 Hz、18 Hz 和30 Hz 分频数据体进行RGB 融合,将不同频率地震体的振幅分别映射到红色、绿色和蓝色,用来代表厚、中等厚度和薄储层,在分频RGB 融合切片中,红色调占比最多,蓝色调和绿色调相对较少,同时色调的亮暗代表泥质含量的高低,从切片特征来看,研究区东西两侧的砂岩储层质量好于中部,经实钻井的标定,亮红色区域主要为厚层心滩构型单元,暗色调分布区多为砂体较薄的辫状河道沉积,与单井构型单元解释吻合度达85%(图6b)。

图6 基于地震属性和分频RGB 融合的NgⅡ-6 小层四级构型单元平面解剖(a)NgⅡ-6小层均方根振幅属性;(b)NgⅡ-6小层分频RGB融合;(c)NgⅡ-6小层四级构型单元平面分布图Fig.6 Planar anatomy of level 4 architecture unit from NgII-6 based on seismic attribute and frequency division RGB fusion

综合NgⅡ-6 小层的20 Hz 分频均方根振幅属性和分频RGB 属性,根据砂质辫状河沉积模式,在钻井的标定下,得出NgⅡ-6 小层构型单元展布图,结合研究区物源特征[15],南堡2-1区该地层沉积时期辫状河流向为南西—北东向,砂体发育广泛,以心滩和辫状河道构型单元为主,多个心滩叠置为复合心滩,发育5 套大型复合心滩(五级构型单元)。单个心滩宽度介于100~300 m,长度介于400~1 000 m,辫状河道沉积砂体宽度在150 m 左右,NgⅡ-6 小层整体砂体连片分布,泛滥平原沉积近乎不发育。在心滩内部均方根振幅线状低值区和分频RGB 切片上的暗色线条,为心滩内叠置的增生体边界(三级构型边界),起到一定的渗流屏障作用。落於层主要分布于均方根振幅低值区和RGB 切片上暗色零星片状区,分布较为局限(图6c)。基于平面构型单元的刻画结果,分析剩余油富集区域时应充分考虑构型界面的分布特征,在后期调整井位部署时,注采井组应尽量位于同一构型单元内部,确保砂体的连通性。

5 结论

(1)南堡2-1 区NgⅡ-6 小层主要发育辫状河沉积,为一套近源堆积的以含砾砂岩和粗砂岩等为主体的粗碎屑沉积,储层砂体以心滩为主,其次为辫状水道,储层内部结构复杂,基于四级构型单元的储层精细解剖对于改善油田开发注水效果具有十分重要的地质意义。

(2)南堡2-1 区NgⅡ-6 小层四级构型单元包括心滩、辫状河道和溢岸三种成因类型,确立了心滩—心滩、辫状河道—心滩和溢岸—心滩三种主要的四级构型垂向叠加样式,以及心滩顺流前积叠覆型、辫状河道下切心滩型和心滩分流辫状河道型三种四级构型单元侧向叠置样式。四级构型单元的垂向和侧向界面成为油田注水开发的重要渗流屏障。

(3)在四级构型单元单井识别及其垂向与剖面叠置样式研究的基础上,采用均方根振幅和分频RGB 融合地层切片技术,在已有钻井构型单元解释结果标定的基础上,依据不同成因构型单元和构型界面的地震响应,实现了NgⅡ-6 小层四级构型单元平面分布的预测,揭示了不同成因类型构型单元的几何形态、规模大小及其结构关系,为优化油田注水开发方案提供了地质依据。

致谢 感谢在论文写作过程中南堡油田作业区李国永经理的支持,感谢编辑的帮助以及审稿专家所给予的意见与建议,感谢研究团队全员的付出。

猜你喜欢

心滩南堡辫状河
苏里格气田密井网区辫状河心滩刻画
沿海强镇 美丽渔乡——南堡镇
基于沉积数值模拟的辫状河心滩演化
PL油田浅水辫状河三角洲隔夹层精细表征方法
苏里格地区上古生界辫状河心滩定量表征影响因素探讨
杭锦旗地区辫状河定量地质知识库建立及应用
辫状河储层内部建筑结构及剩余油分布研究
南堡凹陷老爷庙地区断裂构造与油气成藏
砂质辫状河心滩坝的发育演化过程探讨
——沉积数值模拟与现代沉积分析启示
南堡3-35井钻井难点分析及对策