APP下载

基于机器学习和模板匹配的变电站仪表自动读数方法

2024-02-22李汉巨

电气技术 2024年1期
关键词:表针指针式读数

李汉巨

基于机器学习和模板匹配的变电站仪表自动读数方法

李汉巨

(南方电网数字电网研究院有限公司,广州 510700)

针对变电站固定摄像头拍摄的各种类型的指针式仪表,提出一种自动读数方法。该方法包括模板制作、模板匹配、图像处理、表针识别和几何读数五个阶段。通过模板制作确定刻度值和角度的几何关系,使用模板匹配算法定位待读数的仪表盘位置,提取仪表盘部分的图像,并通过高斯滤波和伽马变换降低光照和阴影对表针识别的干扰。为提升复杂环境下图像二值化的效果,使用K均值聚类算法获取仪表盘图像的动态二值化阈值。为适应圆形和椭圆形变形的表盘,使用可变长度的线段拟合仪表盘二值化图像中的表针,获取表针的旋转角度,再结合主要刻度的角度和刻度值的对应关系,计算出表针角度对应的读数。实际应用结果表明,针对自然场景下变电站中的指针式仪表,该方法对光照、阴影、遮挡、倾斜、变形等干扰因素具有良好的鲁棒性,误差均小于最小刻度间隔,满足工程应用要求。

仪表读数;表针识别;模板匹配;K均值聚类;图像二值化

0 引言

指针式仪表具有结构简单、易于使用、方便维修、抗电磁干扰能力强等优点,且能防尘、防水、防冻,被广泛应用于变电站中,以监控电力设备状态。变电站中的指针式仪表包括压力表、气压表、油位表、温度计、避雷器监测仪等,这些同类或不同类仪表的量程、刻度、表盘形状、安装位置等存在较大差异,并且缺少数据输出接口,这给仪表自动读数带来了挑战,指针式仪表的自动读数是一个需要长期研究的问题。根据应用场景不同,仪表自动读数的图片来源于固定摄像头和不固定摄像头(如巡检机器人[1])两种情形。两种情形下都需要仪表目标检测,提取仪表部分的图像。针对来自不固定摄像头的图片,一般有两种目标检测方法:一种是Hough圆检测[2],但该方法不适用于变形的表盘和其他形状的表盘;另一种是基于深度学习的目标检测,如RCNN(region with convolutional neural network features)和YOLO(you only look once)。由于目前多数变电站使用固定摄像头获取仪表图像,因此本文使用模板匹配方法提取仪表盘部分的图像,具有更好的实用效果。仪表自动读数的两个关键步骤是指针识别和指针读数。虽然深度学习能够统一上述两个步骤,实现端到端的、图像到数值的回归模型,但是深度学习需要海量的标注图像数据。特别在实际应用中,仪表的数值大部分分布在合理的数值范围之内,很难获取数值覆盖整个仪表量程的图像数据,这导致训练出来的深度学习模型无法识别异常值,而异常值恰恰是电力设备监控的重点指标,因此本文不采用深度学习。指针识别的常用方法是Hough直线检测[3-6],但该方法计算量大且容易受噪声和图像二值化效果影响,如检测出多条直线时,较难识别出正确的指针,另外即使识别出正确的指针,也很难确定指针的准确角度。

针对上述问题,本文使用模板匹配算法快速定位仪表盘的位置,提取仪表盘部分的图像,使用K均值聚类算法获取仪表盘图像的动态二值化阈值,提升图像二值化效果。在此基础上,针对指针识别,使用可变长度的可旋转线段拟合仪表盘二值化图像中的指针,其中旋转角度即指针的角度;针对指针读数,根据主要刻度的角度和刻度值的对应关系,计算出表针角度对应的读数。最后,利用人造数据和实际业务数据验证算法的有效性。本文主要工作如下:

1)提出一种基于机器学习和模板匹配的指针式仪表自动读数方法。该方法简单有效,可快速工 程化。

2)提出自适应的图像二值化方法,避免用单一阈值对各种类型的表盘图像进行分割,提升指针识别效果。

3)提出一种使用可变长度的可旋转线段拟合指针的方法,该方法易于获取指针的准确角度。另外,由于指针末端的轨迹是圆形或倾斜的椭圆形,因此该方法与表盘的形状、类型无关,从而能够减少噪声对识别结果的影响,避免Hough直线检测的缺点。

本文算法流程如图1所示,下面进行详细说明。

图1 算法流程

1 模板制作

1.1 表盘区域、圆心定位与主要刻度标注

模板制作如图2所示,获取一张固定摄像头拍摄的图片,对该图片中表盘矩形区域进行截取和标注,如图2(a)所示;截取部分作为模板图片,如图2(b)所示。利用标注软件(如Labelme)获取表盘圆心与主要刻度相对于原图的坐标。值得说明的是,标注的刻度越细,越能减小椭圆形变形的影响,读数准确性越高。利用模板图片可对该摄像头拍摄的其他图像中的表盘进行定位。

1.2 主要刻度值和角度的几何关系

(a)通过Labelme获取表盘矩形区域、圆心与主要刻度的坐标

(b)模板图片

图2 模板制作

式(1)和式(2)表明了刻度值和角度的几何关系。值得指出的是,刻度值和角度的几何关系在固定摄像头情形下保持不变,因此利用这一几何关系可计算出其他图像指针的旋转角度对应的刻度值,完成指针自动读数。

2 模板匹配

模板匹配是一项成熟、可靠的图像处理技术,已广泛应用于字符识别、目标定位、人脸识别等领域[7]。模板匹配就是用一幅较小的图像(模板)与一幅较大图像中的一部分(子图像)进行匹配。匹配的结果是确定在大图像中是否存在小图像,若存在则进一步确定小图像在大图像中的位置。对于摄像头固定的情形,由于存在抖动、室外环境复杂等因素,所拍摄图片中仪表的位置也会发生微小变化。若这种变化只来源于摄像头微小的左右、上下摆动,则同一摄像头所拍摄的图片很少出现旋转情况。因此,使用模板匹配技术能快速、有效地定位仪表在新图像中的位置,进而可以确定新图像中仪表圆心的坐标。

3 图像预处理

3.1 不均匀光照校正

图3 不均匀光照校正效果

3.2 基于K均值聚类算法的图像二值化

不均匀光照对图像二值化效果影响较大,原图的二值化图像无法区分表针,而经过不均匀光照校正后,其二值化图像能较好区分表针。图像二值化效果对比如图4所示。

4 指针识别

5 指针读数

图5 指针识别效果

6 实验结果及分析

6.1 仿真数据实验

在实际应用中,仪表的数值大部分分布在合理数值范围之内,较难获取指针数值覆盖整个仪表量程的图像数据,无法测试算法的泛化能力,因此本文利用生成数据验证算法的泛化能力。利用Echarts生成以下随机数据:1 000个400×400像素表盘,刻度值范围为0~100,一个刻度长度为2,其中表环颜色、表针大小、长度、表针取值等随机生成。仿真数据集如图6所示。

图6 仿真数据集

选定其中一张图片(见图7(a))作为模板,其二值化图像和指针识别效果如图7(b)和图7(c)所示。

图7 仿真数据的模板图片

仿真数据的实验结果见表1。

表1 仿真数据的实验结果

6.2 实测数据实验

采用广州某变电站真实仪表图像,这些图像数据包含光照不均匀、倾斜、椭圆变形、遮挡、模糊、干扰等情况。实测数据的实验结果见表2。从表2可知,本文方法的鲁棒性良好,能有效处理受到各种因素影响的图像。

7 结论

本文研究了变电站复杂环境下固定摄像头拍摄的指针式仪表的自动读数问题,提出一种自动读数方法,主要包括模板制作、模板匹配、图像处理、指针识别和几何读数五部分。这五部分松耦合,可操作性强,不需要大量数据用于建模,能够快速工程化,后期可根据应用效果对每个模块的处理方法进行快速迭代和替换,如:针对模板制作,可提升刻度标注的颗粒度;针对模板匹配,可使用相关法、二次匹配误差算法、高速模板匹配法等方法;针对图像处理,可增加去雾、去雨、增亮等算法。

仿真数据和实测数据的实验结果表明,本文方法适用范围广,可以统一处理各种类型、量程的仪表;鲁棒性好,能有效处理受到光照不均匀、表盘倾斜、椭圆变形、刻度遮挡、表盘模糊、表针干扰等因素影响的图像。

表2 实测数据的实验结果

[1] 孙婷, 马磊. 巡检机器人中指针式仪表示数的自动识别方法[J]. 计算机应用, 2019, 39(1): 287-291.

[2] 段志达, 魏利胜, 刘小珲, 等. 基于Hough变换圆检测和边缘模板匹配的轴承缺陷检测与定位[J]. 安徽工程大学学报, 2020, 35(4): 60-68.

[3] 杜静, 魏鸿磊, 樊双蛟, 等. 基于HOUGH变换的指针式压力表自动识别算法[J]. 机床与液压, 2020, 48(11): 70-75.

[4] 杨应彬, 尹春丽, 刘波, 等. 基于Hough变换与特征聚类的指针轮廓识别方法[J]. 机械设计与研究, 2019, 35(3): 7-11.

[5] 姚洋, 彭道刚, 王志萍. 基于改进Canny检测与Hough变换的仪表图像识别算法[J]. 上海电力大学学报, 2020, 36(2): 183-189.

[6] 高建龙, 郭亮, 吕耀宇, 等. 改进ORB和Hough变换的指针式仪表识读方法[J]. 计算机工程与应用, 2018, 54(23): 252-258.

[7] 朱添益, 戴逢哲, 程思举, 等. 基于图像处理技术的换流站智能扫描系统[J]. 电气技术, 2020, 21(4): 25-29.

[8] 汪荣贵, 朱静, 杨万挺, 等. 基于照度分割的局部多尺度Retinex算法[J]. 电子学报, 2010, 38(5): 1181- 1186.

[9] 王攀峰, 赵书俊, 王双玲, 等. 一种基于Retinex原理的DR图像增强改进算法[J]. 中国体视学与图像分析, 2020, 25(1): 57-64.

[10] 王萍, 孙振明. 多级分解的Retinex低照度图像增强算法[J]. 计算机应用研究, 2020, 37(4): 1204-1209.

[11] 李贤阳, 阳建中, 杨竣辉, 等. 基于改进的直方图均衡化与边缘保持平滑滤波的红外图像增强算法[J]. 计算机应用与软件, 2019, 36(3): 96-103.

[12] 王殿伟, 王晶, 许志杰, 等. 一种光照不均匀图像的自适应校正算法[J]. 系统工程与电子技术, 2017, 39(6): 1383-1390.

[13] 裴超, 王大磊, 杨占刚, 等. 考虑时空分布的配电网站房巡检策略[J]. 电气技术, 2023, 24(1): 86-90.

[14] 陈振祥, 林培杰, 程树英, 等. 基于K-means++和混合深度学习的光伏功率预测[J]. 电气技术, 2021, 22(9): 7-13.

Automatic reading method of substation meters based on machine learning and template matching

LI Hanju

(China Southern Power Grid Digital Power Grid Research Institute Co., Ltd, Guangzhou 510700)

An automatic reading method is proposed for various types of pointer instruments captured by fixed cameras in substations. This method consists of five stages: template making, template matching, image processing, needle recognition, and geometric reading. The geometric relationship between the scale value and the angle is determined by template making. The template matching algorithm is used to locate the position of the meter panel. The image of the meter panel is extracted. The interference of light and shadow on the needle recognition is reduced by Gaussian filter and gamma transform. In order to improve the effect of image binarization in complex environment, K-means clustering algorithm is used to obtain the dynamic binarization threshold of meter panel image. In order to adapt to the round and oval deformed dial, the line segment with variable length is used to fit the needle in the binary image of the meter panel to obtain the angle of the needle, and then the reading corresponding to the angle of the needle is calculated in combination with the corresponding relationship between the angle of the main scale and the scale value. The practical application results show that for the pointer meter in the substation, this method has good robustness to the interference factors such as illumination, shadow, occlusion, inclination and deformation, and the error is less than the minimum scale interval, which meets the engineering application requirements.

meter reading; needle recognition; template matching; K-means clustering; image binarization

2023-09-07

2023-10-27

李汉巨(1979—),男,广东省湛江市人,硕士,高级工程师,主要从事机器学习技术研究工作。

猜你喜欢

表针指针式读数
可收线型多功能万用表的研制
不同搂草方式对苜蓿草品质的影响
《丢了表针的钟》读后感
基于机器视觉的表针自动码垛系统
读数
读数
读数
读数
浅谈指针式万用表的测量方法与使用要点
基于提升小波变换的指针式仪表图像边缘检测