APP下载

基于混沌粒子群自抗扰控制的轧染机张力控制

2023-11-22李幸芳赵世海

现代纺织技术 2023年6期
关键词:抗干扰

李幸芳 赵世海

摘 要:以连续轧染机轧车部分织物张力控制为研究对象,针对其张力耦合等因素导致的张力控制难的问题,建立了轧车部分张力系统的非线性耦合数学模型,并推导出静态解耦模型。采用混沌粒子群优化算法与自抗扰控制技术结合的方法,设计了相邻轧车间的张力控制器,通过自抗扰算法主动估计和补偿张力系统动态耦合部分,实现了系统的静、动态解耦;并采用混沌粒子群算法在线自整定自抗扰控制器中的主要参数。通过仿真实验与常规PID控制器对比发现,混沌粒子群自抗扰控制器能使张力系统实现解耦控制及抑制内外部干扰引起的张力波动,保证轧车恒张力稳定运行,提高系统的稳定性和抗干扰性能。

关键词:张力控制;解耦控制;抗干扰;自抗扰控制;混沌粒子群算法

中图分类号:TS103.8 文献标志码:A 文章编号:1009-265X(2023)06-0207-09

现代连续轧染机运行速度较高,在机器运行过程中张力波动危害巨大;张力过大产生经伸纬缩现象、张力过小产生褶皱现象会造成织物染色不均,严重影响生产质量[1]。同时,连续轧染机是一种多单元联合设备,相邻辊间张力存在耦合性,速度波动或张力波动都会影响后一步工序的顺利进行,织物经过染液槽后在适当的压力下轧压使织物均匀染色,需保证织物在此过程中张力保持恒定,轧车轧辊的线速度是连续轧染机的基准速度[2-3]。轧车部分张力系统具有非线性、时变性、强耦合性和强干扰性的特点,设计一款能够解耦控制并且具有良好抗干扰性能的张力控制器,对连续轧染机完成均匀轧染非常重要。

目前,印染工业领域应用中常用比例-积分-微分(Proportion integration differentiation,PID)控制器实现张力控制,常规PID对于非线性、时变性的张力系统不能取得理想的控制效果[4]。该控制方法往往忽视了不同辊间的张力耦合性,难以满足连续轧染机生产加工要求,在实际生产过程中织物张力会受到诸多因素影响,如机组构件的制造和安装误差[5-6]以及外部环境温度湿度的变化都会对织物张力的稳定性造成干扰,张力控制系统难以达到理想控制效果。近年来,一些现代控制方法被广泛应用在张力控制中。应用鲁棒控制方法和模糊自适应PID[7-9]理论上可以解决张力控制难的问题,但这些方法都依赖系统的精确模型,在实际应用中不易实现。李琳等[10]针对滑模控制存在抖振的问题,采用变速趋近律的方法设计了滑模变结构控制器,解决张力控制系统中速度与张力耦合的问题。Janabi-sharifi[11]在轧钢张力控制中应用模糊控制,但模糊规则需依赖经验和专家知识确定,且模糊控制规则的数量随系统阶次的增加而增加。

本文将自抗扰控制(Active disturbance rejection control,ADRC)[12]应用到连续轧染机轧车张力控制系统中,该算法无需确定被控系统的精确模型,通过将系统内外部干扰主动总和并对扰动实时补偿[13],解决轧车张力系统中的张力波动问题。针对该算法参数难整定的问题,结合混沌粒子群优化(Chaos particle swarm optimization,CPSO)算法[14]对自抗扰控制器中的众多参数进行在线自整定,根据轧车张力系统的数学模型设计了二阶混沌粒子群自抗扰控制器[15]。将轧车部分张力系统中难以建模部分与干扰部分通过控制器估计补偿,仿真实验表明该控制器能实现张力解耦控制且对张力波动有良好的抑制效果。

1 张力系统建模分析

连续轧染机轧车部分共有3个轧车,每个轧车由主动辊和被动辊组成,伺服电动机驱动各个主动辊来控制轧车的速度。轧车张力系统示意如图1所示,其中:Li(i= 3)为辊间织物长度,近似等于各轧车间的距离;v0、F1分别为织物开始速度与张力;F2、F3为各轧车间织物的张力;v3、F4为织物结束速度与张力;v1、v2为辊间织物速度;Mei(i= 3)为轧车电机的转矩;Ri(i= 3)为各辊筒的半径;ωi(i= 3)为各辊筒的角速度。

假定布料与辊筒之间的相互运动为纯滚动,且织物只产生純弹性变形,依据织物质量守恒定律、各辊间动力学原理,连续轧染机轧车部分的张力系统数学模型为:

由式(2)可知,轧车张力系统具有耦合性,且每个车段都可以建立二阶非线性微分方程,根据张力系统的阶数选择二阶自抗扰控制器。将式(2)的方程解耦分析,得出状态空间模型:

3 仿真分析

为验证混沌粒子群自抗扰控制器(CPSO-ADRC)在轧车张力系统中的解耦和抗干扰方面的控制性能,在MATLAB/Simulink中设置轧车张力数学模型和自抗扰控制器模型并编写混沌粒子群优化算法程序驱动仿真模型,经过算法迭代更新得到5个参数的最优解,并与常规PID控制器的控制效果进行对比分析。轧车部分模型参数如表1所示,控制器参数如表2所示。

3.1 解耦性能仿真分析

由胡克定律可得在轧车过程中织物张力源于相邻导辊间的速度差,根据轧车模型参数和相邻导辊的转速差,本文将织物张力设置为40 N。分析轧车张力数学模型得出相邻轧车间张力存在耦合性的结论,即前车段的织物张力发生扰动变化将影响后车段的织物张力,因此需要对其进行解耦控制。在Simulink模型中将F2在4 s时阶跃到45 N持续2 s后恢复至40 N,模拟张力在实际工作过程中发生的张力突变,比较不同控制器的控制效果。各车段解耦性能系统的仿真响应曲线如图3所示。

由图3可知,当F2张力变化时,在PID控制下F3和F4在4 s和6 s都产生波动,而在混沌粒子群自抗扰控制器控制下F3和F4基本未发生波动,因此混沌粒子群自抗扰控制器有良好的解耦性能。

3.2 抗干扰性能仿真分析

3.2.1 抗弹性模量变化

在连续轧染机实际运行工况中轧车前后会经过染液槽和水洗槽,织物的温度和湿度产生变动,致使织物自身弹性模量变化,而织物弹性模量是计算张力的重要参数,这种织物组织内部参数的变化会引起织物张力波动,增加了轧染机恒张力控制的难度。在上文设定的张力变化条件的基础上将织物弹性模量减少15%,比较两种控制器的控制效果。各车段弹性模量变化的系统仿真响应曲线如图4所示。

由图4可知,当织物弹性模量发生变化时PID控制下張力均出现2.3%的超调且到达稳定时间增加,而在混沌粒子群自抗扰控制器控制下弹性模量的变化基本未引起张力变化,表明混沌粒子群自抗扰控制器有较好的抗参数变化性能。

3.2.2 抗速度扰动

织物张力的大小与轧车的速度差有关,轧车的运行速度是由电机带动轧辊传动产生,连续轧染机运行过程中速度扰动是不可忽略的影响因素,当织物的运行速度发生波动时将直接影响织物张力大小,对其进行抗速度扰动仿真实验。轧染张力系统运行5 s时在轧辊ω1上叠加10 r/min、0.5 Hz的正弦信号作为速度扰动,速度波动的系统仿真响应曲线如图5所示。

由图5可知,在加入速度扰动时,PID控制下F2、F3和F4均有明显波动,但混沌粒子群自抗扰控制器控制下张力无明显波动,表明混沌粒子群自抗扰控制器有较好的抗速度扰动性能。

3.2.3 抗噪声扰动

在连续轧染机实际工作过程中常受外部环境的噪声、温度、湿度等因素的影响而引起张力传感器测量不稳定,造成反馈信号波动。将噪声信号加入张力F2的反馈信号中,模拟生产过程中外部环境对张力传感器检测值的影响,观察两种控制器的控制性能,抗干扰性能系统仿真响应曲线如图6所示。

由图6可知,当F2受到白噪声干扰时,PID控制下F3和F4受到明显扰动,但混沌粒子群自抗扰控制器控制下张力无明显波动,表明混沌粒子群自抗扰控制器有良好的抵制外界干扰的性能。

4 结 语

本文针对连续轧染机轧车部分织物张力控制稳定性的要求,根据张力系统强干扰、耦合性、时变性等特性,提出了一种混沌粒子群自抗扰张力控制器。通过与常规PID控制器的仿真对比实验表明,混沌粒子群自抗扰控制器能更好地实现张力动态解耦控制,提升织物张力抗干扰能力,提高了轧车张力控制系统的鲁棒性和控制精度。

本文提出的混沌粒子群自抗扰张力控制器具有良好的仿真性能,但实际控制策略的效果还需工程实践的进一步验证。实际工业生产过程中存在滑动现象和织物塑性变形,同时工业控制中还可能出现控制指令延时现象,会影响控制策略的精度;而混沌粒子群自抗扰控制器能够将可调参数根据张力系统的实际运行情况作出最优解,自适应调整织物张力。后期将进行实验研究并根据实验结果修正调整本文提出的张力控制方法。

参考文献:

[1]杜宇,王琛,杨涛,等.基于PLC的整经机恒张力控制系统设计[J].毛纺科技,2016,44(6):58-61.

DU Yu, WANG Chen, YANG Tao, et al. Design of constant tension controlling system based on PLC in warping machine[J]. Wool Textile Journal, 2016, 44(6): 58-61.

[2]马宏帅,赵世海.基于模糊自抗扰控制的轧车张力控制系统[J].毛纺科技,2018,46(5):67-72.

MA Hongshuai, ZHAO Shihai. Tension control of padder system based on fuzzy auto disturbance rejection control[J]. Wool Textile Journal, 2018, 46(5): 67-72.

[3]姜磊.卷染机自动控制系统的改造设计[J].纺织学报,

2015,36(3):121-127.

JIANG Lei. Innovative design of jig dyeing machine automatic control system[J]. Journal of Textile Research, 2015, 36(3): 121-127.

[4]温玉春,刘祺君.基于模糊PID的包装机热封切刀温度控制[J].包装工程,2017,38(3):109-113.

WEN Yuchun, LIU Qijun. Temperaturecontrol of heat-sealing cutter of packaging machines based on fuzzy PID[J]. Packaging Engineering, 2017, 38(3): 109-113.

[5]曹健.抑制张力波动传播的自抗扰解耦控制[J].机械科学与技术,2015,34(9):1410-1414.

CAO Jian. Linearactive disturbance rejection decoupling control for suppressing propagation of tension fluctuation[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(9): 1410-1414.

[6]PAGILLA P R, DWIVEDULA R V, ZHU Y L, et al. Periodic tension disturbance attenuation in web process lines using active dancers[J]. Journal of Dynamic Systems, Measurement, and Control, 2003, 125(3): 1-9.

[7]李健,梅雪松,陶涛,等.放卷张力系统H_∞鲁棒控制器的设计[J].西安交通大学学报,2012,46(1):86-90,102.

LI Jian, MEI Xuesong, TAO Tao, et al. H_∞ robust control design for unwinding tension system[J]. Journal of Xi'an Jiaotong University, 2012, 46(01): 86-90,102.

[8]汤伟,王古月,王露露.新型悬浮包装中薄膜张力的模糊自适应PID控制[J].包装工程,2018,39(3):141-145.

TANG Wei, WANG Guyue, WANG Lulu. Fuzzy Adaptive PID Control of Film Tension in New Suspension Package[J]. Packaging Engineering, 2018, 39(3): 141-145.

[9]MAO G Y, WU M, LIU H K. Based on the application of self-learning fuzzy PID control in tension control system[J]. Advanced Materials Research, 2013, 655/656/657: 1505-1509.

[10]李琳,林炯辉,邹焱飚.基于滑模变结构的张力控制系统设计[J].机械设计与制造,2016(4):175-177.

LI Lin, LIN Jionghui, ZOU Yanbiao. Design of tension control system based on sliding mode control[J]. Machinery Design & Manufacture, 2016(4): 175-177.

[11]JANABI-SHARIFI F. A neuro-fuzzy system for looper tension control in rolling Mills[J]. Control Engineering Practice, 2005, 13(1): 1-13.

[12]韩京清.自抗扰控制技术[J].前沿科学,2007,1(1):24-31.

HAN Jingqing. Auto disturbances rejection control technique[J]. Frontier Science, 2007, 1(1): 24-31.

[13]高志强.自抗扰控制思想探究[J].控制理论与应用,2013,30(12):1498-1510.

GAO Zhiqiang. On the foundation of active disturbance rejection control[J]. Control Theory &Applications, 2013, 30(12): 1498-1510.

[14]王尔申,贾超颖,曲萍萍,等.基于混沌粒子群优化的北斗/GPS组合导航选星算法[J].北京航空航天大学学报,2019,45(2):259-265.

WANG Ershen, JIA Chaoying, QU Pingping, et al. BDS/GPS integrated navigation satellite selection algorithm based on chaos particle swarm optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 259-265.

[15]张智轩,李涛,伍鹏飞,等.改进混沌粒子群算法的四旋翼PID姿态控制[J].电光与控制,2022,29(3):16-20.

ZHANG Zhixuan, LI Tao, WU Pengfei, et al. Quad-rotor PID parameter tuning based on improved

chaotic particle swarm optimization[J]. Electronics Optics & Control, 2022, 29(3): 16-20.

[16]KURU L, OZTURK A, KURU E, et al. Determination of voltage stability boundary values in electrical power systems by using the Chaotic Particle Swarm Optimization algorithm[J]. International Journal of Electrical Power and Energy Systems, 2015, 64: 873-879.

[17]刘玲,钟伟民,钱锋.改進的混沌粒子群优化算法[J].华东理工大学学报(自然科学版),2010,36(2):267-272.

LIU Ling, ZHONG Weimin, QIAN Feng. Animproved Chaos-Particle Swarm Optimization algorithm[J]. Journal of East China University of Science and Technology(Natural Science Edition) , 2010, 36(2): 267-272.

Tension control of rolling and dyeing machines based on chaotic particle swarmand auto disturbance rejection control

LI Xingfang, ZHAO Shihai

Abstract: The continuous pad dyeing machine is a typical multi-unit joint equipment. According to its pad dyeing process, the continuous pad dyeing machine is divided into unwinding, pad dyeing, drying and winding units. The continuous pad dyeing machine needs to be controlled by constant tension during operation to ensure uniform dyeing of the fabric. If the fabric is subjected to excessive tension, it will produce warp and weft contraction and even fracture, which will affect the quality of pad dyeing. If the fabric tension is too small, it will produce wrinkles or fabric deviation, which seriously affects the economic benefits of enterprises. The pad dyeing unit is the most critical unit of the continuous pad dyeing machine, and its tension control effect will directly affect the printing and dyeing quality of the fabric. Therefore, it is crucial to ensure the constant tension of the fabric during the operation of the continuous pad dyeing machine. In this paper, the tension control system of the pad dyeing unit of the continuous pad dyeing machine was taken as the research object. In view of the difficulty of tension control such as tension coupling, the nonlinear coupling mathematical model of the tension system of the rolling mill was established, the static decoupling model was obtained, and the control algorithm was designed and verified by simulation experiments.

Firstly, according to the operation mechanism of pad dyeing unit and its structure diagram, the parameters such as moment of inertia inthe pad dyeing process were analyzed, and the dynamic model of the pad dyeing unit was established according to the law of mass conservation and Hooke's law. By observing the tension mathematical model of the pad dyeing unit, it is concluded that there are tension coupling and tension speed coupling between adjacent two rollers, and the system has nonlinear, time-varying, multi-interference and strong coupling characteristics. It is difficult to achieve the ideal control effect for the conventional PID controller of this kind of system. In this paper, the tension controller of adjacent rolling workshop was designed by using the combination of chaotic particle swarm optimization (CPSO) and active disturbance rejection control (ADRC). The dynamic coupling part of the tension system was estimated and compensated by the active disturbance rejection algorithm to realize the complete decoupling of the system, and the chaotic particle swarm optimization algorithm was used to adjust the main parameters of the active disturbance rejection controller online. The tension system of pad dyeing unit was simulated by MATLAB/Simulink, and the control effect of chaotic particle swarm auto disturbance rejection controller and conventional PID controller was observed. The experimental results show that the chaotic particle swarm active disturbance rejection controller is insensitive to the change of internal parameters and has good anti-interference. The control accuracy and stability are better than those of the conventional PID controller, and it can effectively suppress the tension fluctuation caused by coupling and interference. It is of great significance to improve the overall operation performance of the continuous pad dyeing machine.

Keywords: tension control; decoupling control; anti-interference; active disturbance rejection control; chaos particle swarm optimization algorithm

收稿日期:20230523 網络出版日期:20230804

基金项目:天津市科技支撑重点计划项目(15ZCDGX00840)

作者简介:李幸芳(1998—),女,辽宁本溪人,硕士研究生,主要从事机电一体化方面的研究。

通信作者:赵世海,E-mail:tjshzhao@163.com

猜你喜欢

抗干扰
广播发射台自动控制系统抗干扰技术研究
试论如何确保PLC控制系统的可靠性
水浴温控系统模糊自适应PID研究与应用
反舰导弹雷达导引头试验数据动态处理模型设计
舰载雷达面临的电子对抗威胁及防范措施分析
变频器控制回路抗干扰措施及调试故障处理
基于频率自适应的数据链系统抗干扰技术
一种抗多径衰落接收机的实现方法
变电运行中继电保护作用与抗干扰技术
发电厂继电保护二次回路抗干扰措施分析