中华猕猴桃全基因组MADS-box基因家族鉴定及表达分析
2023-11-21高欢郑珂昕廖光联王海令陈璐贾东峰黄春辉曲雪艳徐小彪
高欢 郑珂昕 廖光联 王海令 陈璐 贾东峰 黄春辉 曲雪艳 徐小彪
摘 要:【目的】鉴定并分析中华猕猴桃MADS-box基因家族成员,探明MADS-box基因家族成员在果实生长发育及芽休眠中的表达模式。【方法】基于中华猕猴桃红阳V3基因组数据库,利用生物信息学方法对中华猕猴桃MADS-box全基因组进行鉴定,分析其家族成员的理化性质、系统进化树、保守基序、顺式作用元件,并对其在果实生长发育及不同组织中的表达模式进行分析。【结果】在中华猕猴桃红阳基因组中鉴定到了68个AcMADS-box基因,共包含11个亚家族,不均匀地分布于22条染色体上,成员间共存在32对共线性基因对;在基因家族上游启动子区域发现与光响应、激素响应、逆境胁迫响应等相关的顺式元件;17个AcMADS-box基因在组织间高表达且有表达特异性,推测是参与调控中华猕猴桃生长发育的关键基因。【结论】初步鉴定并提供了AcMADS-box家族成员信息,16个AcMADS-box家族成员在根、枝、茎、叶、花中高表达,8个家族成员在花芽中高表达。结果为进一步研究AcMADS-box参与中华猕猴桃的生长发育调控机制提供参考。
关键词:中华猕猴桃;MADS-box;光响应;顺式元件;生长发育
中图分类号:S663.4 文献标志码:A 文章编号:1009-9980(2023)11-2307-18
Genome-wide identification and expression analysis of the MADS-box gene family in Actinidia chinensis
GAO Huan1, 2, ZHENG Kexin1, 2, LIAO Guanglian2, WANG Hailing1, 2, CHEN Lu2, JIA Dongfeng1, 2, HUANG Chunhui1, 2, QU Xueyan1, 2, XU Xiaobiao1, 2*
(1College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China; 2Kiwifruit Institute of Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China)
Abstract: 【Objective】 MADS-box transcription factor plays an important role in plant growth and development, such as regulating abiotic stress response, transition from vegetative growth to reproductive growth, root development and fruit maturation. Members of the MADS-box gene family have been identified in several species. However, knowledge about MADS-box gene family members, and their evolutionary and functional characteristics is limited in kiwifruit. The purpose of this study was to identify and analyze MADS-box gene family and determined its expression during the fruit development and bud dormancy, so as to provide theoretical basis for the regulation mechanism of MADS-box gene family members. 【Methods】 Based on the Hongyang ‘V3 genome data of Actinidia chinensis, MADS-box was identified and its gene structure, chromosome distribution, phylogeny, promoter cis-acting element and expression patterns were analyzed. 【Results】 68 AcMADS-box genes were identified in the Hongyang genome of A. chinensis, among which 35 belonged to Type I genes and 33 belonged to Type Ⅱ genes. There were 11 subfamilies (Mγ, Mβ, Mδ, Mα, FLM, SOC1, ANR1, SVP, AP3, SHP and SEP). AcMADS-box gene was unevenly distributed on 21 chromosomes except 8, 10, 17, 18, 19, 22 and 24. There were 32 collinear gene pairs, 11, 4 and 3 pairs of MIKC, M, MIKC and M genomes, respectively. The results of the physical and chemical properties showed that the protein encoded by AcMADS-box gene family was composed of 77 to 1703 aa, the molecular weight of the protein was 8 917.01 to 121 149.91 u, and the isoelectric point was 4.55 to 11.25. Except AcMIDS24-MIKC, the protein was fat-soluble hydrophilic protein. AcMADS24-MIKC was a water-soluble hydrophilic protein. The CDS sequence length encoded by AcMADS-box protein was 234 to 1791 bp except for AcMIDS33-M, and the CDS sequence length encoded by AcMIDS33-M gene was 3222 bp, which was significantly higher than other genes of AcMADS-box gene family. In addition, the subcellular localization prediction analysis showed that the AcMADS-box gene family members were located in the nucleus. By predicting the secondary structure of the proteins encoded by 68 members of the MADS gene family, it was found that the secondary structure of the MADS gene family proteins was mainly Alpha helix, in which Type Ⅱ accounted for 45.83%-83.57% and TypeⅠaccounted for 23.75%-72.72%. Random coil of Type Ⅱ accounted for 7.14%-47.06% and TypeⅠaccounted for 16.58%-52.71%. Beta turn of Type Ⅱ accounted for 0%-8.74% and TypeⅠBeta turn accounted for 1.3%-13.1%. Extension strand of Type Ⅱ accounted 1.94%-18.13% and TypeⅠaccount for 5.88%-28.22%. The proportion of Beta turn and extension strand had little difference but was significantly lower than Alpha helix and Random coil. 12 motifs were found in AcMADS-box protein sequence named Motif 1-Motif 12 motifs. Motif 1 and Motif 2 were typical domains of MADS, and all proteins contained Motif 1 or Motif 2. Motif 4 was found in all Type Ⅱ proteins except AcMADS1-MIKC and AcMADS30-MIKC. Motif 5, Motif 7, Motif 9 and Motif 10 belonged to the specific domain of TypeⅠ. A total of 47 elements related to light response (28), hormone response (12), stress resistance (4) and growth rhythm (3) were identified in the upstream promoter region of AcMADS-box gene family. 771 components related to optical response were identified, including G-Box, Box4, GT1-motif and CTt-motif, and each AcMADS-box contained at least 5 components related to optical response. Five hormones regulated by AcMADS-box cis-acting element were ABA (ABRE), Auxin (AuxRE, AuxRR-core, TGA-box and TGA-element), MeJA (CGTCA-motif and TGACG-motif), GA3 (GARE-motif, P-box and TATC-box), and SA (SARE and TAT-element). There were stress-related elements in the gene family, including those related to drought induction (MBS), low temperature response (LTR), anaerobic induction (ARE) and stress-resistance (TC-rich repeats). In addition, the AcMADS-box gene family also contained cis-acting element related to meristem expression (CAT-box, NON-box) and circadian rhythms. Transcriptomic analysis showed that the expression of AcMADS -box genes was significantly different in fruit ripening, 18 family members (10 M type and 3 MIKC type) had no expression in the whole development stage, and 16 members of AcMADS-box family had the highest expression level in young fruit period. The expression levels of 20 family members decreased with fruit ripening, while the expression levels of 14 family members increased with fruit ripening. The expression levels of AcMADS35-M and AcMADS21-MIKC genes were the highest at the ripening period, and then decreased. The expression levels of AcMADS26-M genes were opposite to those of AcMADS35-M and AcMADS21-MIKC genes, and increased with fruit ripening. During ripening period, its expression was significantly higher than that in young fruit period and mature-green period. The expression levels of AcMADS10-MIKC, AcMADS12-MIKC and AcMADS6-MIKC were the highest in the mature-green period. The expression level of AcMADS10-MIKC gene was higher in young fruit period, mature-green period and ripening period. The analysis of AcMADS-box expression in different tissues (leaf, root, vine, cane, flower and flower bud) showed that AcMADS-box genes were differentially expressed in different tissues, and 16 family members were highly expressed in leaves, roots, vines, canes and flowers of A. chinensis. Among them, AcMADS10-MIKC, AcMADS11-MIKC, AcMADS12-MIKC, AcMADS17-MIKC, AcMADS21-MIKC, AcMADS23-MIKC and AcMADS7-M were expressed significantly higher in flowers than in other tissues. The expression level of AcMADS2-MIKC in vines and canes was higher than that in leaves, roots and flowers. The expression of AcMADS19-MIKC, AcMADS20-MIKC and AcMADS31-MIKC was significantly higher in leaves, vines and canes than in roots and flowers. Eight family members were highly expressed in the flower buds. Among them, the expression of AcMADS20-MIKC was higher in Jan., Feb., Mar., Apr., Nov. and Dec., while AcMADS26-M was significantly higher in May, Jun., Jul. and Aug. than that of the remaining 6 months. 【Conclusion】 A total of 68 AcMADS-box genes were identified in this paper. Through the sequence analysis of 2000 bp upstream promoter of AcMADS-box family members, it was found that each gene member of the family contained multiple cis-acting elements related to hormone response and stress response. It is speculated that members of this family may be involved in the regulation of fruit ripening and the resistance to stress such as drought, low temperature and anaerobic response. We found that 17 AcMADS-box genes were highly expressed and had expression specificity among tissues, which were speculated to be the key genes involved in regulating the development of the growth and development of A. chinensis.
Key words: Actinidia chinensis; MADS-box; Optical response; Cis-acting element; Growth and development
收稿日期:2023-03-22 接受日期:2023-08-03
基金项目:国家自然科学基金项目(32160692)
作者简介:高欢,女,在读硕士研究生,研究方向:果树种质资源与分子生物技术。Tel:15797810980,E-mail:gh11180128@163.com
*通信作者Author for correspondence. Tel:13767008891,E-mail:xbxu@jxau.edu.cn
MADS命名源于4种蛋白因子的首字母:MINICHROMOSOME MAINTENANCE 1(MCM1)、AGAMOUS(AG)、DEFICIENS(DEF)和SERUM RESPONSE FACTOR(SRF)[1]。这些蛋白因子的共同特点是N段均含有50~60个氨基酸残基组成的高度保守结构域—MADS结构域[2],该结构域可与靶基因调控域中CArG-box[CC(A/T)6GG]序列结合[3]。根据进化系谱,MADS主要包括Type-Ⅰ和Type-Ⅱ两类[4]。其中Type-Ⅰ型基因的数目大,进化过程中选择的压力较小,常以串联重复的方式产生新基因。而Type-Ⅱ型基因的数目大,进化过程中选择的压力极大,以重复的方式产生新的基因[5-7]。植物中常见的MADS-box基因为M型(Type-Ⅰ)和MIKC型(Type-Ⅱ)。早期发现MADS-box调节花器官的发育并形成了著名的ABCDE模型[8-9],揭示了MADS-box在花器官发育中的作用。在拟南芥中A类(AP1和FUL)B类(AP3和PI),主要负责花萼和花瓣的发育,在花瓣和雄蕊中特异性表达;C类(AGAMOUS),负责调控雄蕊和心皮发育;D类(AGL11),在胚珠中特异表达;E类(SEP),负责调控四轮花器官的形成[10]。近些年有关MADS-box转录因子的研究陆续报道,发现它们除了参与调节开花时间、影响花器官的形成和花粉育性外,还可以参与调控植物营养生长到生殖生长的转化、参与调控植物的光合作用、种皮发育、胚形态建成、子房发育、根的生长发育,该家族基因成为果实成熟及品质形成的重要调控网络[11]。2018年,Lu等[12]证明了FaMADS1a负调控FaPAL6、FaCHS、FaDFR和FaANS来抑制花青苷的积累;梅忠等[13]也发现,PpcDAM6还参与樱桃花芽休眠及休眠解除过程。
目前为止已经在多个物种中进行了MADS-box基因家族成员鉴定,如拟南芥、苹果、梨、葡萄、枇杷、兰花[14-19]、番茄[4]等,但关于猕猴桃MADS-box基因家族的鉴定研究尚未进行。笔者基于猕猴桃数据库红阳猕猴桃全基因组测序结果,利用生物信息的方法对猕猴桃MADS-box转录因子家族成员进行鉴定,同时对其家族成员在不同组织及果实发育的不同期表达情况进行差异分析,以期为揭示MADS-box基因家族的生物学功能奠定理论基础。
1 材料和方法
1.1 数据获取
从猕猴桃转录因子数据库PlantTFDB(http://planttfdb.gao-lab.org/index.php)下载中华猕猴桃红阳V3基因组和基因注释文件,从甜橙数据库(http://citrus.Hzau.edu.cn/index.php)下载基因组蛋白序列文件,根据文献获得拟南芥MADS-box转录因子的登录号[14],并从TAIR网站(http://www.arabidopsis.org/)下载拟南芥MADS-box转录因子共107个基因编码蛋白序列。
1.2 AcMADS-box基因家族成员的全基因组鉴定
利用TBtools[20]软件将已知的拟南芥MADS基因蛋白序列与红阳和甜橙的基因组蛋白序列进行BLAST比对,利用Microsoft Excel 2019删除重复序列分别获得AcMADS-M、AcMADS-MIKC基因家族的候选序列。结合pfam(http://pfam.xfam.org/)在线网站筛选获得候选基因序列是否具有MADS-box的保守序列,同时根据其是否具有K-box结构域将其划分为MIKC型MADS-box基因和M型MADS-box基因成員。同样的方法筛选CsMADS-box基因家族成员。
1.3 AcMADS-box基因家族系统发育树构建
分别从甜橙数据库和猕猴桃数据库下载甜橙和中华猕猴桃红阳的MADS-box基因家族成员的氨基酸序列。利用MEGA X软件先将拟南芥、猕猴桃及甜橙的MADS-box编码的氨基酸序列进行多重序列比对,然后用邻接法构建进化树,软件参数设置默认值。
1.4 AcMADS-box基因家族的理化性质分析
利用中华猕猴桃红阳V3基因组的注释文件用TBtools[20]软件提取染色体定位信息。利用ExPASy(https://web.expasy.org/protparam/)在线网站预测CsMADS基因蛋白质分子质量大小、等电点和疏水性等信息[21]。用Plant-mPLoc(http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/)在线网站来预测AcMADS的亚细胞定位。
1.5 AcMADS-box蛋白二级结构预测与保守域分析
使用NPSA(https://npsa-prabi.ibcp.fr/cgibin/npsa_automat.pl?page=npsa_sopma.html)在线网站对AcMADS-box基因家族成员的蛋白质二级结构进行分析。利用MEME(http://meme-suite.org/tools/meme)在线网站对AcMADS-box蛋白的motifs进行识别,motifs的最大值设为12[22],然后利用TBtools[20]软件进行可视化分析。
1.6 AcMADS-box基因家族成员顺式作用元件及共线性分析
利用TBtools[20]软件提取AcMADS-box基因翻译起始位点上游2000 bp,然后利用PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)在线网站进行顺式作用元件分析[23],利用Microsoft Excel 2019对结果进行统计分析,用TBtools[20]软件绘制热图。利用TBtools[20]对MADS家族基因进行共线性分析。
1.7 AcMADS-box基因家族在果实发育期的表达分析
从猕猴桃数据库(https://kiwifruitgenome.org/organism/3)下载中华猕猴桃红阳V3在幼果期(immature)、绿熟期(mature green)、软熟期(ripe)3个时期的转录组数据,同时从NCBI下载PRJNA888809转录组测序数据,采用RPKM法计算基因表达量,利用TBtools[20]进行log2标准化后生成热图。
2 结果与分析
2.1 AcMADS-box基因家族成员
鉴定出中华猕猴桃MADS-box基因家族成员68个,其中M型AcMADS-box基因有35个,命名为AcMADS1-M~AcMADS35-M,MIKC型AcMADS-box基因33个,命名为AcMADS1-MIKC~AcMADS33-MIKC(表1),ACMADS-box基因不均匀的分布在除8、10、17、18、19、22、24号以外的22条染色体上,其中MIKC型家族基因在15号染色体上分布最多。M型家族基因在2、12号染色体上分布最多。除AcMIDS33-M外AcMADS-box蛋白编码CDS序列长度为234(AcMIDS23-M)~1791(AcMIDS24-M)bp,AcMIDS33-M基因CDS序列长度为3222 bp,显著高于AcMADS-box基因家族成员的其他基因。另外所有AcMADS-box基因家族成员均为预测定位于细胞核。
2.2 AcMADS-box基因家族的理化性质
利用ExPASY在线网站对AcMADS-box蛋白的理化性质进行分析,结果如表2所示,AcMADS-box基因家族编码蛋白由77~1703个氨基酸组成,蛋白质分子质量大小为8 917.01~121 149.91 u,等电点为4.55~11.25。此外,除AcMIDS24-MIKC外AcMADS-box蛋白均为脂溶性亲水蛋白,AcMADS24-MIKC为水溶性亲水蛋白;94%的MIKC型AcMADS-box蛋白和71%的M型为不稳定性蛋白。
2.3 AcMADS-box蛋白结构预测及保守域
利用NPSA在线软件对68个MADS基因家族成员编码的蛋白质进行二级结构预测,结果如表3所示,中华猕猴桃MADS基因家族蛋白二级结构主要是α螺旋(Alpha helix),其中Type Ⅱ型占比45.83%(AcMADS1-MIKC)~83.57%(AcMADS24-MIKC),Type Ⅰ型占比23.75%(AcADS35-M)~72.72%(AcADS12-M);不规则卷曲(Random coil)Type Ⅱ型占比7.14%(AcMADS24-MIKC)~47.06%(AcMADS14-MIKC),Type Ⅰ型占比16.58%(AcADS12-M)~52.71%(AcADS34-M)。Type Ⅱ型β转角(Beta turn)占比0%(AcMADS14-MIKC、AcMADS 18-MIKC、AcMADS 28-MIKC)~8.74%(AcMADS 17-MIKC),Type Ⅰ型β轉角(Beta turn)占比1.30%(AcADS23-M)~13.10%(AcADS8-M);Type Ⅱ型延伸链(Extenden strand)占比1.94%(AcMADS18-MIKC)~18.13%( AcMADS 13-MIKC),Type Ⅰ型延伸链(Extenden strand)占比5.88%(AcADS12-M)~28.22%(AcADS13-M);β转角与延伸链所占比例相差不大但显著低于α螺旋与不规则卷曲占比。
如图1所示,通过MEME在线软件对AcMADS-box蛋白质序列进行分析,将基序数量设置为12个保守基序,分别为Motif1~Motif12。Motif1和Motif2是典型的MADS结构域,所有蛋白都含有Motif1或Motif2。除AcMADS1-MIKC、AcMADS30-MIKC蛋白外,Type Ⅱ型蛋白都有Motif4。Motif5、Motif7、Motif9、Motif10属于Type Ⅰ型特有结构域。
2.4 AcMADS-box基因家族的进化
如图2所示,拟南芥、甜橙、中华猕猴桃的MADS基因分为11个亚家族:Mγ、Mβ、Mδ、Mα、FLM、SOC1、ANR1、SVP、AP3、SHP、SEP。M型家族成员主要分布在Mα亚家族,该家族由16个M型家族成员组成。MIKC型家族成员不均匀地分布在8个亚家族,猜测可能与其功能多样性有关。以上分析表明,AcMADS-box家族成员进化存在差异,也预示着该家族蛋白功能具有多样性。
2.5 AMADS-box基因家族顺式作用元件、多重共线性分析
利用PlantCARE在线软件预测AcMADS-box基因家族成员上游2000 bp序列,在AcMADS-box中共鉴定出47种与光响应(28种)、激素响应(12种)、抵御逆境胁迫响应(4种)及生长节律(3种)相关的元件(图3)。AcMADS-box中鉴定出771个与光响应相关的元件主要有G-Box、Box4、GT1-motif、TCT-motif,其中G-Box和Box4最多且在每个AcMADS-box中都至少含有5个与光响应相关的元件。AcMADS-box顺式元件调控5种激素分别为ABA(ABRE)、Auxin(AuxRE、AuxRR-core、TGA-box、TGA-element)、MeJA(CGTCA-motif、TGACG-motif)、GA3(GARE-motif、P-box、TATC-box)、SA(SARE、TAT-element)。基因家族中有与逆境胁迫相关的元件,包括与干旱诱导(MBS)、低温反应(LTR)、厌氧诱导(ARE)、抵御逆境胁迫(TC-rich repeats)相关的元件。除此之外AcMADS-box基因家族中还含有与分生组织表达(CAT-box、NON-box)、昼夜节律(Circadian)相关的顺式元件。
利用TBtools软件对中华猕猴桃MADS-box基因家族成员进行物种内共线性分析,共检测出32对片段重复事件,如图4所示。MIKC型、M型、MIKC和M型基因组之间分别有11对(AcMADS2-MIKC/AcMADS22-MIKC,AcMADS13-MIKC/AcMADS9-MIKC,AcMADS27-MIKC/AcMADS15-MIKC,AcMADS16-MIKC/AcMADS3-MIKC,AcMADS32-MIKC/AcMADS29-MIKC,AcMADS33-MIKC/AcMADS31-MIKC,AcMADS33-MIKC/AcMADS20-MIKC,AcMADS20-MIKC/AcMADS14-MIKC,AcMADS17-MIKC/AcMADS11-MIKC,AcMADS17-MIKC/AcMADS4-MIKC,AcMADS11-MIKC/AcMADS4-MIK),4对(AcMADS22-M/AcMADS18-M,AcMADS34-M/AcMADS31-M,AcMADS34-M/AcMADS27-M,AcMADS25-M/AcMADS1-M),3对(AcMADS16-MIKC/AcMADS32-MIK,AcMADS7-M/AcMADS21-MIKC,AcMADS23-M/AcMADS3-MIKC)重复基因,有部分基因聚集在染色体的特定区域,这可能与基因重复有关。结果表明,基因复制可能是中华猕猴桃基因组MADS基因扩增、进化的动力。
2.6 AcMADS-box基因家族成员在不同发育期的表达
对中华猕猴桃幼果期、绿熟期、软熟期三个时期的转录组表达进行分析,结果如图5所示。AcMADS基因在不同发育期的表达具有差异性,18个家族成员(M型15个、MIKC型3个)在整个发育期均无表达,16个AcMADS-box家族成员在绿熟期的表达量最高。20个家族成员基因随着果实成熟表达量下降,14个家族成员表达量相反随着果实的成熟表达量升高。AcMADS35-M、AcMADS21-MIKC基因在幼果期表达量最高,随后表达量降低,AcMADS26-M基因的表达量与AcMADS35-M、AcMADS21-MIKC基因相反,随果实的成熟表达量增加,在软熟期其表达量显著高于幼果期和绿熟期。AcMADS10-MIKC、AcMADS12-MIKC、AcMADS6-MIKC在绿熟期表达量最高,其中AcMADS10-MIKC基因在幼果期、绿熟期、软熟期三时期的表达量都较高。
2.7 AcMADS-box基因家族成员在不同组织的表达
为了研究AcMADS-box基因家族的表达模式,分别对AcMADS-box在不同组织(叶、根、枝、茎、花、芽)的表达量进行分析,结果如图6所示。AcMADS-box基因在不同组织中有差异的表达,16个家族成员(AcMADS2-MIKC,AcMADS10-MIKC,AcMADS11-MIKC,AcMADS12-MIKC,AcMADS17-MIKC,AcMADS19-MIKC,AcMADS20-MIKC,AcMADS21-MIKC,AcMADS23-MIKC,AcMADS27-MIKC,AcMADS31-MIKC,AcMADS33-MIKC,AcMADS7-M,AcMADS25-M,AcMADS26-M,AcMADS35-M)在中华猕猴桃叶、根、枝、茎、花中高表达(图6-A)。其中AcMADS10-MIKC、AcMADS11-MIKC、AcMADS12-MIKC、AcMADS17-MIKC、AcMADS21-MIKC、AcMADS23-MIKC、AcMADS7-M在花中表达量显著高于其他组织;AcMADS2-MIKC在枝、茎中的表达量高于叶、根、花;AcMADS19-MIKC、AcMADS20-MIKC、AcMADS31-MIKC在叶、枝、茎中的表达量显著高于在根花中的表达量。
8个家族成员(AcMADS2-MIKC,AcMADS19-MIKC,AcMADS20-MIKC,AcMADS22-MIKC,AcMADS27-MIKC,AcMADS31-MIKC,AcMADS33-MIKC,AcMADS26-M)在花芽中高表达(图6-B)。其中AcMADS20-MIKC在1、2、3、4、11、12月表达量高于5、6、7、8月表达量,而AcMADS26-M在5、6、7、8月表达量显著高于其余6个月。
3 讨 论
MADS-box是调控果树花器官发育、果实成熟及果品发育调节网络中的关键因子,是呼吸跃变型果实成熟所必需的。笔者在本研究中通过鉴定和分析AcMADS-box基因家族成员,探究该家族基因对中华猕猴桃生长发育的影响。
目前,从拟南芥[14]、苹果[15]、梨[16]、葡萄[17]、枇杷[18]、大豆[24]等物种分别鉴定出107、146、95、54、89、143个MADS-box基因家族成员,笔者在本研究中利用生物信息分析的方法从猕猴桃红阳数据库获得68个MADS-box转录因子,推测其数量差异可能受基因组大小或物种进化过程的缺失和复制的影响。M型MADS家族基因数量高于MIKC型,这与前人在葡萄[17]上的研究结果不一致。进化分析与保守域分析的结果一致,具有相同保守域的基因家族成员优先聚为一类,其进化树的分类结构与拟南芥和甜橙基本一致,说明MADS基因家族在物种间具有相对保守的进化趋势。对启动子顺式作用元件进行分析,可能对某一基因功能的研究具有重要意义。通过对AcMADS-box家族成员启动子上游2000 bp的序列分析,發现家族各基因成员含有多个与激素反应、胁迫反应等相关的顺式作用元件,推测该家族成员可能参与了果实成熟的调控和抵御干旱、低温、厌氧等逆境胁迫。除此之外,AcMADS-box家族成员每个基因都至少含有5个与光响应相关的顺式元件,推测AcMADS-box的表达量受光的调控。在锥栗[25]、葡萄[17]、枇杷[18]的启动子中也发现了光响应、激素反应及逆境胁迫等相关的响应元件。
筆者在本研究中发现,AcMADS-box基因在不同组织及果实发育的不同时期表现出不同的表达特征,基因的表达特征与其功能密切相关,推测AcMADS-box在组织发育和植物生长过程中具有不同作用。拟南芥中的SVP/AGL24类MADS-box基因与休眠转变密切相关,在休眠诱导期间表达量上调,休眠解除期间下调[26],目前已经在杏[27]、桃[26]、苹果[28]、梨[29]中有相关报道。在本研究中,属于SVP分支的AcMADS20-MIKC基因1、2、3、4、11、12月在花芽中高表达;5、6、7、8月表达量较低,与拟南芥FLC聚集的基因AcMADS26-M表达量与其相反,Hemming等[30]研究发现,FLC不仅参与拟南芥开花应答的温度调控,而且还能够调控多年生木本植物的芽休眠。FLC在休眠诱导期间表达上调,休眠解除后表达下调[31],在本研究中,AcMADS26-M在5、6、7、8月(休眠期)上调,1、2、3、4、11、12月表达量显著低于5、6、7、8月,这与前人的研究结果一致,推测AcMADS20-MIKC、AcMADS26-M是调控芽休眠及休眠解除关键基因。笔者在本研究中还发现,在中华猕猴桃植物组织中MIKC型表达量显著高于M型,其中属于AP3/PI、SHP、SEP分支的AcMADS10-MIKC、AcMADS11-MIKC、AcMADS12-MIKC、AcMADS17-MIKC、AcMADS21-MIKC、AcMADS23-MIKC、AcMADS27-MIKC、AcMADS31-MIKC在花中的表达量最高;SOC1、SVP分支中AcMADS19-MIKC、AcMADS20-MIKC在叶、枝、茎的表达量高于花。
在果实成熟过程中有6个基因表达量高且有明显差异,其中AcMADS21-MIKC属于SEP亚家族成员,在草莓[12]、甜樱桃[32]、苹果[15]、枇杷[18]的研究中发现SEP亚家族基因对呼吸跃变型和非呼吸跃变型的果实有负调控作用,可以抑制乙烯的生物合成及信号传导影响果实成熟和软化。AcMADS21-MIKC基因转录本在果实中积累,且积累量随着果实的成熟逐渐减少,这与Gaffe等[33]的研究结果相同。AcMADS26-M基因表达量与AcMADS21-MIKC、AcMADS35-M呈相反趋势,随着果实成熟表达量上调,笔者推测该基因可能是乙烯合成积累的促进因子。MADS家族基因的SHP亚家族基因成员在胚珠、心皮及发育中的果皮表达,可以控制类胡萝卜素的形成。Vrebalov等[34]在番茄中发现该家族基因在早期发育及果实成熟中均发挥作用。本研究中属于SHP亚家族的AcMADS12-MIKC基因在果实成熟期间先上升后下降,因此推测该基因的差异表达可能是促进果实成熟及类胡萝卜素形成的关键。
目前有关中华猕猴桃MADS基因家族成员的信息还没有报道,笔者分析中华猕猴桃MADS基因家族成员,推测该家族成员不仅参与中华猕猴桃花芽萌发还参与调控营养和繁殖型器官的生长发育,以期为今后关于MADS基因家族的研究和品种选育提供理论参考。
4 结 论
从中华猕猴桃红阳V3基因组中鉴定得到了68个AcMADS-box基因(M型35个,MIKC型33个),均位于细胞核且不均匀地分布于22条染色体上。在启动子区域发现有与光响应、激素响应、逆境胁迫等相关的顺式元件。果实成熟过程中有6个AcMADS-box基因表达量高且有明显差异,17个AcMADS-box基因在叶、根、枝、茎、花、芽组织中有差异性高表达。表明AcMADS-box在中华猕猴桃生长发育过程中有重要的调控作用。
参考文献 References:
[1] ALVAREZ-BUYLLA E R,LILJEGREN S J,PELAZ S,GOLD S E,BURGEFF C,DITTA G S,VERGARA-SILVA F,YANOFSKY M F. MADS-box gene evolution beyond flowers:Expression in pollen,endosperm,guard cells,roots and trichomes[J]. The Plant Journal,2000,24(4):457-466.
[2] SHORE P,SHARROCKS A D. The MADS-box family of transcription factors[J]. European Journal of Biochemistry,1995,229(1):1-13.
[3] RIECHMANN J L,WANG M Q,MEYEROWITZ E M. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1,APETALA3,PISTILLATA and AGAMOUS[J]. Nucleic Acids Research,1996,24(16):3134-3141.
[4] WANG Y S,ZHANG J L,HU Z L,GUO X H,TIAN S B,CHEN G P. Genome-wide analysis of the MADS-box transcription factor family in Solanum lycopersicum[J]. International Journal of Molecular Sciences,2019,20(12):2961.
[5] PAUL P,DHATT B K,MILLER M,FOLSOM J J,WANG Z,KRASSOVSKAYA I,LIU K,SANDHU J,YU H H,ZHANG C,OBATA T,STASWICK P,WALIA H. MADS78 and MADS79 are essential regulators of early seed development in rice[J]. Plant Physiology,2020,182(2):933-948.
[6] KANG I H,STEFFEN J G,PORTEREIKO M F,LLOYD A,DREWS G N. The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis[J]. The Plant Cell,2008,20(3):635-647.
[7] 吕山花,孟征. MADS-box基因家族基因重复及其功能的多样性[J]. 植物学通报,2007,42(1):60-70.
L? Shanhua,MENG Zheng. Gene duplication and functional diversification in the MADS-box gene family[J]. Chinese Bulletin of Botany,2007,42(1):60-70.
[8] COEN E S,MEYEROWITZ E M. The war of the whorls:Genetic interactions controlling flower development[J]. Nature,1991,353(6339):31-37.
[9] PELAZ S,DITTA G S,BAUMANN E,WISMAN E,YANOFSKY M F. B and C floral organ identity functions require SEPALLATA MADS-box genes[J]. Nature,2000,405(6783):200-203.
[10] SOLTIS D E,MA H,FROHLICH M W,SOLTIS P S,ALBERT V A,OPPENHEIMER D G,ALTMAN N S,DEPAMPHILIS C,LEEBENS-MACK J. The floral genome:an evolutionary history of gene duplication and shifting patterns of gene expression[J]. Trends in Plant Science,2007,12(8):358-367.
[11] 芦旺,席万鹏. MADS-box转录因子在果实成熟及品质形成中的调控作用研究进展[J]. 园艺学报,2018,45(9):1802-1812.
LU Wang,XI Wanpeng. MADS-box transcription factors are involved in regulation for fruit ripening and quality development[J]. Acta Horticulturae Sinica,2018,45(9):1802-1812.
[12] LU W J,CHEN J X,REN X C,YUAN J J,HAN X Y,MAO L C,YING T J,LUO Z S. One novel strawberry MADS-box transcription factor FaMADS1a acts as a negative regulator in fruit ripening[J]. Scientia Horticulturae,2018,227:124-131.
[13] 梅忠,朱友银,刘向蕾,李永强,赵华. 中国樱桃花芽休眠相关MADS-box基因的克隆与功能初探[J]. 植物生理学报,2018,54(9):1433-1440.
MEI Zhong,ZHU Youyin,LIU Xianglei,LI Yongqiang,ZHAO Hua. Isolation and functional analysis of dormancy-associated MADS-box gene in cherry (Prunus pseudocerasus) flower bud[J]. Plant Physiology Journal,2018,54(9):1433-1440.
[14] PARENICOV? L,DE FOLTER S,KIEFFER M,HORNER D S,FAVALLI C,BUSSCHER J,COOK H E,INGRAM R M,KATER M M,DAVIES B,ANGENENT G C,COLOMBO L. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:New openings to the MADS world[J]. The Plant Cell,2003,15(7):1538-1551.
[15] 董慶龙,冀志蕊,迟福梅,田义,安秀红,徐成楠,周宗山. 苹果MADS-box转录因子的生物信息学及其在不同组织中的表达[J]. 中国农业科学,2014,47(6):1151-1161.
DONG Qinglong,JI Zhirui,CHI Fumei,TIAN Yi,AN Xiuhong,XU Chengnan,ZHOU Zongshan. Bioinformatics of the MADS-box transcription factor and their expression in different apple tissues[J]. Scientia Agricultura Sinica,2014,47(6):1151-1161.
[16] WANG R Z,MING M L,LI J M,SHI D Q,QIAO X,LI L T,ZHANG S L,WU J. Genome-wide identification of the MADS-box transcription factor family in pear (Pyrus bretschneideri) reveals evolution and functional divergence[J]. PeerJ,2017,5:e3776.
[17] GRIMPLET J,MART?NEZ-ZAPATER J M,CARMONA M J. Structural and functional annotation of the MADS-box transcription factor family in grapevine[J]. BMC Genomics,2016,17(1):1-23.
[18] 刘楠,寇燕,李小婷,陈旭,高欢欢,张晶,王超,郑嘉敏,郑国华. 枇杷MADS-box全基因组鉴定及其在果实成熟过程中的潜在作用[J]. 福建农林大学学报(自然科学版),2022,51(3):351-360.
LIU Nan,KOU Yan,LI Xiaoting,CHEN Xu,GAO Huanhuan,ZHANG Jing,WANG Chao,ZHENG Jiamin,ZHENG Guohua. Genome-wide identification and analysis of MADS-box gene family in loquat and its potential role in fruit ripening[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2022,51(3):351-360.
[19] 李琼洁,江周. 兰花MADS-box基因研究进展[J]. 安徽农业科学,2017,45(6):137-140.
LI Qiongjie,JIANG Zhou. Research progress of MADS-box gene in orchid[J]. Journal of Anhui Agricultural Sciences,2017,45(6):137-140.
[20] CHEN C J,CHEN H,ZHANG Y,THOMAS H R,FRANK M H,HE Y H,XIA R. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[21] WILKINS M R,GASTEIGER E,BAIROCH A,SANCHEZ J C,WILLIAMS K L,APPEL R D,HOCHSTRASSER D F. Protein identification and analysis tools in the ExPASy server[J]. Methods in Molecular Biology,1999,112:531-552.
[22] BAILEY T L,WILLIAMS N,MISLEH C,LI W W. MEME:Discovering and analyzing DNA and protein sequence motifs[J]. Nucleic Acids Research,2006,34(Web Server issue):W369-373.
[23] ROMBAUTS S,D?HAIS P,VAN MONTAGU M,ROUZ? P. PlantCARE,a plant cis-acting regulatory element database[J]. Nucleic Acids Research,1999,27(1):295-296.
[24] FAN C M,WANG X,WANG Y W,HU R B,ZHANG X M,CHEN J X,FU Y F. Genome-wide expression analysis of soybean MADS genes showing potential function in the seed development[J]. PLoS One,2013,8(4):e62288.
[25] 余玉云,沈軍,柳明珠,罗开金,陈世品. 锥栗MADS-box基因家族鉴定及组织特异性表达分析[J]. 森林与环境学报,2023,43(1):60-67.
YU Yuyun,SHEN Jun,LIU Mingzhu,LUO Kaijin,CHEN Shipin. Identification of the MADS-box gene family and its tissue-specific expression in Castanea henryi[J]. Journal of Forest and Environment,2023,43(1):60-67.
[26] BIELENBERG D G,WANG Y,LI Z G,ZHEBENTYAYEVA T,FAN S H,REIGHARD G L,SCORZA R,ABBOTT A G. Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation[J]. Tree Genetics & Genomes,2008,4(3):495-507.
[27] SASAKI R,YAMANE H,OOKA T,JOTATSU H,KITAMURA Y,AKAGI T,TAO R. Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot[J]. Plant Physiology,2011,157(1):485-497.
[28] KUMAR G,ARYA P,GUPTA K,RANDHAWA V,ACHARYA V,SINGH A K. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malus × domestica)[J]. Scientific Reports,2016,6:20695.
[29] NIU Q F,LI J Z,CAI D Y,QIAN M J,JIA H M,BAI S L,HUSSAIN S,LIU G Q,TENG Y W,ZHENG X Y. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud[J]. Journal of Experimental Botany,2016,67(1):239-257.
[30] HEMMING M N,TREVASKIS B. Make hay when the Sun shines:The role of MADS-box genes in temperature-dependant seasonal flowering responses[J]. Plant Science,2011,180(3):447-453.
[31] DO?RAMACI M,HORVATH D P,CHAO W S,FOLEY M E,CHRISTOFFERS M J,ANDERSON J V. Low temperatures impact dormancy status,flowering competence,and transcript profiles in crown buds of leafy spurge[J]. Plant Molecular Biology,2010,73(1):207-226.
[32] 段續伟,倪杨,张晓明,闫国华,王晶,周宇,张开春. 甜樱桃成花相关MADS-box基因的克隆及表达分析[J]. 果树学报,2018,35(1):20-31.
DUAN Xuwei,NI Yang,ZHANG Xiaoming,YAN Guohua,WANG Jing,ZHOU Yu,ZHANG Kaichun. Isolation and expression analysis of MADS-box gene related to flowering regulation in sweet cherry[J]. Journal of Fruit Science,2018,35(1):20-31.
[33] GAFFE J,LEMERCIER C,ALCARAZ J P,KUNTZ M. Identification of three tomato flower and fruit MADS-box proteins with a putative histone deacetylase binding domain[J]. Gene,2011,471(1/2):19-26.
[34] VREBALOV J,RUEZINSKY D,PADMANABHAN V,WHITE R,MEDRANO D,DRAKE R,SCHUCH W,GIOVANNONI J. A MADS-box gene necessary for fruit ripening at the tomato Ripening-inhibitor (Rin) locus[J]. Science,2002,296(5566):343-346.