APP下载

2型糖尿病与非乙醇性脂肪性肝病关系的研究进展

2023-08-26田静张学辉车奎王颜刚

青岛大学学报(医学版) 2023年3期
关键词:胆汁酸菌群脂肪酸

田静 张学辉 车奎 王颜刚

[摘要]2型糖尿病(T2DM)与非乙醇性脂肪性肝病(NAFLD)是世界性的公共卫生问题,严重危害人类健康,且发病率呈逐年增高趋势。本综述主要探讨T2DM与NAFLD的相互关系及其相互作用机制,为制定T2DM合并NAFLD的防治措施提供依据。

[关键词]糖尿病,2型;非乙醇性脂肪性肝病;综述

[中图分类号]R587.1;R575.5[文献标志码]A[文章编号]2096-5532(2023)03-0449-05

doi:10.11712/jms.2096-5532.2023.59.082[開放科学(资源服务)标识码(OSID)]

[网络出版]https://kns.cnki.net/kcms2/detail/37.1517.R.20230726.1034.003.html;2023-07-2616:23:50

RESEARCH PROGRESS ON RELATIONSHIP BETWEEN TYPE 2 DIABETES MELLITUS AND NONALCOHOLIC FATTY LIVER DISEASE TIAN Jing, ZHANG Xuehui, CHE Kui, WANG Yangang (Department of Endocrine and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao 266003, China)

[ABSTRACT]Type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD) are public health problems across the world, with increasing incidence year by year, posing serious threats to human health. This review focuses on the relationship between T2DM and NAFLD and the interaction mechanism to provide a basis for the prevention and treatment of T2DM with NAFLD.

[KEY WORDS]diabetes mellitus, type 2; non-alcoholic fatty liver disease; review

2型糖尿病(T2DM)是一种慢性代谢性疾病,主要是由于胰腺β细胞功能失调导致胰岛素分泌相对不足或者靶器官发生胰岛素抵抗(IR),而引起的糖、脂肪和蛋白质代谢紊乱。T2DM持续性的高糖血症状态会导致心脏、脑、眼、肾脏、足、血管及周身神经的损伤,进而引起各种急慢性并发症[1]。非乙醇性脂肪性肝病(NAFLD)可从单纯性脂肪肝(NAFL)发展至非乙醇性脂肪性肝炎(NASH),进一步发展为脂肪性肝纤维化,甚至会发展为肝硬化并可能最终导致肝癌的发生,严重威胁人类健康[2]。随着T2DM和肥胖的流行, NAFLD逐渐增多,不仅已成为另一个威胁健康的隐形杀手,还是T2DM、高血压以及血脂异常的高危因素[3]。目前,中国T2DM、总体肥胖和腹型肥胖患病率逐年增高[4]。T2DM合并NAFLD是亟待解决的公共卫生问题,但是两者的相互关系及其相互作用机制尚不完全明确,尚无针对性治疗的靶向药物。因此,本文就T2DM与NAFLD的相互关系及其相互作用机制进行综述。

1T2DM诱导NAFLD的产生

T2DM存在较重的IR,脂肪生成作用被高度刺激,机体存在明显的高胰岛素血症及高脂血症,这可能是由于雷帕霉素靶蛋白(mTOR)信号通路被激活亦或是内质网应激所致[5]。高胰岛素血症及高脂血症可以分别刺激固醇调节元件结合蛋白1(SREBP1c)和碳水化合物反应元件结合蛋白(ChREBP)这两种脂肪合成的关键调节因子的激活,随后下游的脂肪酸合酶(FAS)、乙酰辅酶A羧化酶(ACCs)等脂肪生成酶活力上调,导致肝脏生成游离脂肪酸(FFA)过量[6]。刘冬恋等[7]研究证实,在T2DM大鼠模型的肝脏中,出现了过氧化物酶体增殖激活受体α(PPARα)蛋白表达的下调,这进一步导致脂肪酸的脂解作用减弱,造成脂肪酸在肝脏异位沉积。在生理情况下,当肝糖原含量占肝脏质量的5%时即接近饱和,肝脏额外吸收的葡萄糖均被用于脂肪酸的合成。肝脏应用糖合成脂肪酸的过程被定义为脂肪的从头合成(DNL)途径。机体在正常情况下肝脏脂肪酸的氧化与合成处于动态平衡状态,从而使肝脏三酰甘油(TG)处于正常水平。正常人的肝脏中,DNL途径不是肝脏脂肪酸合成的主要途径。可是一旦机体出现肥胖以及高胰岛素血症,肝脏可通过DNL途径储备肝脏脂肪25%以上的脂肪酸[8],出现此种现象的原因可能与IR有关。正常情况下,机体胰岛素通过抑制激素敏感性脂肪酶(HSL)达到抑制脂肪脂解的作用。T2DM时由于存在不同途径的IR,胰岛素对HSL的抑制作用减弱,而HSL主要水解二酰甘油(DAG)sn-3位酯键,生成一酰甘油和脂肪酸。由此导致脂肪组织的脂解作用大大增强,大量的FFA通过血流进入肝脏,造成脂质在肝脏的异位沉积,从而加速了NAFLD的形成[9]。综上所述,T2DM在IR情况下,脂质的合成与分解代谢之间的动态平衡被打破,导致肝脏中脂质沉积,肝脏TG含量升高,提示T2DM能诱导NAFLD的发生。

2NAFLD促进T2DM的发生发展

NAFLD代谢异常的基础为肝脏脂质沉积伴随脂代谢过程中的β氧化以及酯化的紊乱,从而刺激肝脏慢性低度炎症的发生,进一步导致肝脏IR,最终发展为糖酵解障碍和肝糖原合成减少;而糖原的分解和糖异生增加,肝糖输出相对增多,导致T2DM的发生。NAFLD诱导T2DM的发病机制包括脂毒性、氧化应激以及炎症反应等。

2.1NAFLD启动肝脏IR诱导T2DM发生

肝脏脂质沉积可导致肝脏代谢异常,也是代谢综合征(Mets)的肝脏表现,通过多种方式启动IR。有文献表明,长链饱和脂肪酸(LCSFAs)在其中的作用至关重要。LCSFAs一方面通过脂质合成的中间产物DAG、二棕榈酰磷脂酸等影响胰岛素信号传导通路,导致血糖升高,诱发T2DM的产生。NAFLD病人中DAG的浓度明显升高,DAG和二棕榈酰磷脂酸可激活DAG-PKCε信号通路,进而抑制胰岛素受体酪氨酸激酶,使胰岛素信号通路受阻,导致肝脏糖原合成减少;叉头框亚群O(FOXO)磷酸化下降,導致FOXO向细胞核转运增加,使磷酸烯醇式丙酮酸羧化酶增加,糖异生能力增强,糖原合成激酶3(GSK3)活力下降,导致糖原合成减少,机体血糖水平升高,诱发T2DM的产生[10]。另一方面,LCSFAs可通过增加氧化应激、内质网应激、炎症反应而影响胰岛素信号通路,导致IR。LCSFAs浓度升高,导致细胞内β氧化增强,使线粒体解偶联同时生成活性氧(ROS),而ROS可直接激活JNK信号通路;高浓度的LCSFAs亦能诱发内质网应激,并进一步激活核因子(NF-κB)和JNK炎症信号通路[11]。有研究发现,在NASH状态下肝脏NF-κB信号途径中的P65表达明显增高,当NF-κB信号途径被激活后可诱导促炎细胞因子如肿瘤坏死因子α(TNF-α)、白细胞介素6(IL-6)等的释放,促炎细胞因子诱导IR的发生,促进T2DM发生的进程[12]。

2.2NAFLD引起胰腺β细胞损伤

研究表明,胰腺β细胞功能的减低,加快糖耐量受损向T2DM的发生发展[13],当机体发生NAFLD时,可引起FFA及TG含量偏高,导致胰腺β细胞对急性血糖升高刺激的敏感性降低,进而引起靶器官胰岛素分泌减少。同时还有研究发现,NAFLD晚期病人糖基化产物(AGEs)和脂质过氧化产物(MDA)增多,它们均直接或者间接介导对胰腺β细胞的毒性作用,从而导致胰腺β细胞功能的障碍,加速T2DM的进程[14]。

2.3NAFLD干扰肠促胰岛素分泌且影响其功能

常见的肠促胰岛素包括肠促胰岛素样肽-1(GLP-1)和葡萄糖依赖性促胰岛素分泌多肽(GIP),GIP是空肠K细胞和十二指肠分泌的一种肠肽类激素,其半衰期比较短(2~7 min),在体内很容易被二肽基肽酶-4(DPP-4)降解成GIP(3-42)。GIP(3-42)可竞争性地结合GIP(1-42)受体,导致GIP(1-42)促胰岛素分泌作用受到抑制。GLP-1是结肠及回肠L细胞分泌的另外一种肠肽类激素,其半衰期更短(<2 min),其降解主要是由DPP-4完成的,被降解后生成数个无活性的GLP-1(9-36)。GLP-1以胞吐方式释放,与GLP-1受体(GLP-1R)特异性结合,强化胰腺β细胞的功能[15]。肝脏分泌胆汁酸,胆汁酸与G蛋白、法尼醇受体(FOX)偶联的胆汁酸受体(TGR5)结合,刺激回肠和结肠的L细胞分泌GLP-1,NAFLD胆汁酸代谢异常,影响GLP-1的分泌,从而影响糖代谢[15-16],诱导T2DM的产生。

2.4NAFLD肝细胞因子可增加T2DM发病风险

NAFLD病人可分泌多种肝细胞因子,其中有成纤维细胞生长因子21(FGF21)、胎球蛋白A和视黄醇结合蛋白4(RBP4)等。胎球蛋白A作为T2DM发病的独立危险因素,可以抑制骨骼肌和肝脏中胰岛素受体酪氨酸激酶,刺激巨噬细胞、脂肪细胞释放促炎细胞因子,也可作为TLR-4配体,促进FFA进一步激活TLR-4,导致炎症信号通路的激活和IR[17],加快T2DM的进程。RBP4和肝脏FGF21可以直接影响胰岛素信号通路的传导、肝糖原的合成和肝脏糖的异生[18-20]。另外,一些体液因子如AGEs、胰岛素样生长因子-1(IGF-1)可诱导IR,干扰葡萄糖代谢过程。肝病时AGEs增多,AGEs与AGEs特异性受体(RAGE)结合,激活NF-κB信号通路,导致促炎症细胞因子(如IL-6、TNF-α)的释放,这些细胞因子诱发肝脏IR和胰腺β细胞的损害参与了T2DM的发生[21-22]。IGF-1也是肝脏产生的另外一种体液因子,且具有胰岛素样活性,通过抑制生长激素以及胰岛素的分泌过程,增强肝脏胰岛素的敏感性,从而使高胰岛素血症得到缓解;IGF-1的调控通过生长激素完成,当机体出现高胰岛素血症时,生长激素的生物活性受到抑制,致使IGF-1生成受阻,导致生长激素等胰岛素拮抗激素生成增多,从而加重IR[23],导致糖尿病的发生。

2.5NAFLD的葡萄糖代谢紊乱

肝脏是葡萄糖代谢的主要场所。NAFLD可出现肝酶生成障碍、肝功能受损,外周组织和肝脏对葡萄糖的利用度明显降低,同时促进糖异生,增加血液中葡萄糖的浓度,导致糖代谢严重异常,最终催化糖尿病的发生[24]。当NAFLD发生时,肝脏对体内的生长激素、糖皮质激素、胰高血糖素以及儿茶酚胺类等胰岛素拮抗激素的降解明显减少,由于负反馈调节加强了胰岛素的抑制作用,导致高糖血症发生[25-26]。当NAFLD出现肝硬化时,由于门体分流胰岛素可直接进入血液循环,且由于肝功能的减退和肝脏对胰岛素的灭活作用减低,导致机体出现高胰岛素血症,进一步诱发IR,最终导致糖尿病[27]。

3肠道菌群对T2DM与NAFLD关系的影响

肠道菌群与人类健康休戚相关,正常情况下,肠道菌群处于动态平衡状态,在动态情况下与人类处于共生状态。肠道菌群失调在代谢性疾病的发生、发展中起到重要作用,特别是糖尿病、NAFLD等发生发展与肠道微生物的动态变化有密切关联[28-29]。

3.1T2DM以及NAFLD时肠道菌群的变化

糖尿病时肠道菌群有如下变化:拟杆菌门/厚壁菌门、拟杆菌属-普雷沃菌属、β变性菌纲、硫酸盐还原菌、黏蛋白降解菌、大肠埃希菌、粪拟杆菌、梭菌等升高,疣状菌纲、粪杆菌属、产丁酸盐细菌(普拉梭菌、直肠真杆菌、罗斯拜瑞菌)等降低[30]。NAFLD时肠道菌群有如下变化:变形菌门、放线菌门、梭杆菌门升高,普雷沃菌属、拟杆菌门减少[31-32]。另有研究发现,纠正T2DM菌群失调状态可有效地控制糖化血红蛋白水平和血糖波动,同时能改善IR[33-34]。有研究显示,肠道菌群一方面通过调节宿主脂肪储存基因的表达来促进宿主本身脂肪的堆积,另一方面肠道菌群动态平衡失调可导致机体慢性低水平炎症反应,最终引起脂代谢异常,从而致使脂肪在肝脏的异常堆积,诱发NAFLD[35]。

3.2肠道菌群失调影响T2DM与NAFLD关系的机制

肠道菌群失调影响T2DM与NAFLD关系的具体机制可能与以下几个方面有关。①肠道菌群失调导致病原体分子产生过多,致使机体免疫耐受丧失和炎症反应加剧,肠壁完整性受损,这进一步导致肠道泄露和炎症相关性疾病的发生发展[36]。其中最典型的为脂多糖(LPS)/内毒素机制,T2DM存在肠道菌群失调,有害菌属增多,LPS大量流入血液。入血后LPS与脂多糖结合蛋白(LBP)、CD14组成复合物,通过激活肝细胞表面的Toll样受体4(TLR-4),导致TLR-4/MyD88信号通路的激活,引起免疫细胞的活化,最终导致肠道炎症持续性加重;Toll样受体激活后还可激活NF-κB炎症信号通路,导致促炎因子IL-6、TNF-α等的释放,这些促炎因子又可反过来刺激NF-κB信号途径的再次激活,形成炎症的级联放大反应,诱导慢性炎症的持续性存在,加重IR,从而加速NAFLD的形成[37-38]。②短链脂肪酸(SCFAs) 主要由乙酸、丙酸和正丁酸组成,是盲肠和结肠中的菌群发酵膳食纤维的终产物。有研究发现,补充SCFAs可使G蛋白偶联受体(Gpr)如Gpr41、Gpr43在脂肪组织中的表达增高,从而促进脂肪组织中TG水解以及FFA的氧化,抑制慢性炎症,达到减轻肥胖、降低体质量目的,由此减少由于肥胖诱导的IR,从而减少以IR为发病基础的T2DM和NAFLD的发生和发展[39]。另有研究发现,SCFAs刺激激活Gpr41并与其结合,导致酪酪肽(PYY)的生成,而PYY可通过抑制肠道蠕动增加机体的饱腹感达到减少机体热量摄入的目的,从而缓解糖尿病的发生和发展;Gpr41被激活后与SCFAs结合,可减少体内脂肪异常堆积,进一步减少NAFLD的发生,与此同时亦可促进GLP-1释放入血[40-42]。众所周知,GLP-1能促进血糖升高引起的胰岛素分泌,增加胰岛素敏感性,使机体饱腹感增强,延长胃排空时间,起到降低血糖的作用,延缓糖尿病和NAFLD的发生发展。有研究显示,高脂饮食大鼠粪便中SCFAs明显降低, 静脉血浆血糖显著升高,加速了T2DM的疾病进展,而灌胃丙酸钠的T2DM小鼠的血糖水平和IR情况均得到明显改善[43-44]。另外研究表明,SCFAs代谢终产物乙酸对下丘脑的食欲中枢有抑制作用,丙酸对PYY及GLP-1的分泌有促进作用,进一步减少小鼠脂质沉积及进食量,丁酸可通过激活AMP激活的蛋白激酶(AMPK)信号途径增加脂肪酸氧化,减轻脂肪异常沉积,减少NAFLD发生[45-47]。③胆汁酸(BAs)是由肝脏合成的一类胆烷酸的总称,是胆固醇在肝脏代谢的产物,包括初级胆汁酸和次级胆汁酸,胆固醇在肝脏代谢为初级胆汁酸后储存于胆囊,后经胆囊释放进入肠道,在肠道菌群的作用下初级胆汁酸转换为次级胆汁酸。当肠道菌群失调后,次級胆汁酸的转换作用减弱,影响G蛋白偶联胆汁酸受体1(GPBAR1)和法尼醇X受体(FXR)的表达[48]。胆汁酸代谢产物与相应受体GPBAR1结合后刺激Ⅱ型脱碘酶释放,使机体甲状腺激素水平升高,提高脂肪酸代谢,加快机体能量消耗,从而改善IR和预防肥胖的发生,降低糖尿病和脂肪肝的发生率[49]。有研究显示,双敲除肝脏FXR和小分子异源二聚体伴侣(SHP)的小鼠,体内糖类和脂类的平衡得到改善,体质量增加得到有效控制,肥胖体型得到改善。由此可见,肝脏FXR的激活可能对全身能量的动态平衡产生影响[50]。业已证实,T2DM中部分病人存在严重IR,在这些病人中胆汁酸的合成、12α-羟化胆汁酸的含量增加,且12α-羟化胆汁酸可能对胰岛素的功能起负向调节作用[51]。另外有研究结果显示,12α-羟化胆汁酸的变化可能通过固醇12α羟化酶(CYP8B1)和糖异生调节的转录因子叉头框蛋白O1(FoxO1)相互作用,影响胰岛素的信号传导通路,诱发IR,加重T2DM的病情,从而进一步诱发以“IR” 为发病机制的NAFLD的发生[52]。④基因研究结果显示,肠道菌群基因丰度高的人群较丰度低的人群较少发生脂质代谢紊乱、IR以及周身肥胖等代谢病[53]。

4小结与展望

T2DM与NAFLD的关系错综复杂,互为因果。T2DM可诱导NAFLD的发生,而NAFLD时启动IR、损害胰腺β细胞、干扰肠促胰岛素分泌以及肠道菌群失调等促进T2DM的发生发展。由于T2DM与NAFLD的发病机制尚未完全阐明,因此尚无治疗的特效药物。本文就T2DM与NAFLD相互关系及其相互作用机制做一综述,为研发T2DM与NAFLD新型治疗药物做一铺垫。

[参考文献]

[1]WONG Y H, WONG S H, WONG X T, et al. Genetic asso-ciated complications of type 2 diabetes mellitus[J].  Panminerva Medica, 2022,64(2):274-288.

[2]YANG X F, LU M, YOU L J, et al. Herbal therapy for ame-liorating nonalcoholic fatty liver disease via rebuilding the intestinal microecology[J].  Chinese Medicine, 2021,16(1):62.

[3]SPOREA I, MARE R, POPESCU A, et al. Screening for liver fibrosis and steatosis in a large cohort of patients with type 2 diabetes using vibration controlled transient elastography and controlled attenuation parameter in a single-center real-life experience[J].  Journal of Clinical Medicine, 2020,9(4):1032.

[4]CHEN Y, WANG Y Y, XU K L, et al. Adiposity and long-term adiposity change are associated with incident diabetes: a prospective cohort study in southwest China[J].  International Journal of Environmental Research and Public Health, 2021,18(21):11481.

[5]ZHAO W, CHEN L, ZHOU H, et al. Protective effect of carvacrol on liver injury in type 2 diabetic db/db mice[J].  Molecular Medicine Reports, 2021,24(5):741.

[6]YIN J J, CHEN X F, ZHANG F, et al. RMRP inhibition prevents NAFLD progression in rats via regulating miR-206/PTPN1 axis[J].  Mammalian Genome, 2022,33(3):480-489.

[7]劉冬恋,凌保东,谭林,等. 桑叶总黄酮对2型糖尿病大鼠肝脏过氧化物酶体增殖物激活受体α和腺苷酸活化蛋白激酶α2蛋白表达的影响[J].  中国老年学杂志, 2017,37(22)5521-5523.

[8]VEL?ZQUEZ A M, BENTANACHS R, SALA-VILA A, et al. ChREBP-driven DNL and PNPLA3 expression induced by liquid fructose are essential in the production of fatty liver and hypertriglyceridemia in a high-fat diet-fed rat model[J].  Molecular Nutrition & Food Research, 2022,66(7): e2101115.

[9]HENDERSON G C. Plasma free fatty acid concentration as a modifiable risk factor for metabolic disease[J].  Nutrients, 2021,13(8):2590.

[10]YOUNOSSI Z M, GOLABI P, DE AVILA L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis[J].  Journal of Hepatology, 2019,71(4):793-801.

[11]SENGA S, KOBAYASHI N, KAWAGUCHI K, et al. Fatty acid-binding protein 5 (FABP5) promotes lipolysis of lipid droplets, de novo fatty acid (FA) synthesis and activation of nuclear factor-kappa B (NF-κB) signaling in cancer cells[J].  Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2018,1863(9):1057-1067.

[12]LIU G C, CUI Z, GAO X Y, et al. Corosolic acid ameliorates non-alcoholic steatohepatitis induced by high-fat diet and carbon tetrachloride by regulating TGF-β1/Smad2, NF-κB, and AMPK signaling pathways[J].  Phytotherapy Research, 2021,35(9):5214-5226.

[13]HAYDEN M R. An immediate and long-term complication of COVID-19 may be type 2 diabetes mellitus: the central role of β-cell dysfunction, apoptosis and exploration of possible me-chanisms[J].  Cells, 2020,9(11):2475.

[14]SAMSUZZAMAN M, LEE J H, MOON H, et al. Identification of a potent NAFLD drug candidate for controlling T2DM-mediated inflammation and secondary damage in vitro and in vivo[J].  Frontiers in Pharmacology, 2022,13:943879.

[15]MANTOVANI A, DALBENI A. Treatments for NAFLD: state of art[J].  International Journal of Molecular Sciences, 2021,22(5):2350.

[16]JONSSON I, BOJSEN-M ?倝LLER K N, KRISTIANSEN V B, et al. Effects of manipulating circulating bile acid concentrations on postprandial GLP-1 secretion and glucose metabolism after roux-en-Y gastric bypass[J].  Frontiers in Endocrinology, 2021,12:681116.

[17]JI Y, LEE H, KAURA S, et al. Effect of bariatric surgery on metabolic diseases and underlying mechanisms[J].  Biomolecules, 2021,11(11):1582.

[18]PARLATI L, RGNIER M, GUILLOU H, et al. New targets for NAFLD[J].  JHEP Reports, 2021,3(6):100346.

[19]MOABELO K L, LERGA T M, JAUSET-RUBIO M, et al. A label-free gold nanoparticles-based optical aptasensor for the detection of retinol binding protein 4[J].  Biosensors, 2022,12(12):1061.

[20]TORABI R, GHOURCHIAN H. Ultrasensitive nano-aptasensor for monitoring retinol binding protein 4 as a biomarker for diabetes prognosis at early stages[J].  Scientific Reports, 2020,10(1):594.

[21]WU Q, FENG Y N, OUYANG Y, et al. Inhibition of advanced glycation endproducts formation by lotus seedpod oligomeric procyanidins through RAGE-MAPK signaling and NF-κB activation in high-AGEs-diet mice[J].  Food and Chemical Toxicology: an International Journal Published for the British Industrial Biological Research Association, 2021,156:112481.

[22]LI J S, JI T, SU S L, et al. Mulberry leaves ameliorate diabetes via regulating metabolic profiling and AGEs/RAGE and p38 MAPK/NF-κB pathway[J].  Journal of Ethnopharmacology, 2022,283:114713.

[23]RACHDAOUI N. Insulin: the friend and the foe in the deve-lopment of type 2 diabetes mellitus[J].  International Journal of Molecular Sciences, 2020,21(5):1770.

[24]TARGHER G, COREY K E, BYRNE C D, et al. The complex link between NAFLD and type 2 diabetes mellitus-mechanisms and treatments[J].  Nature Reviews Gastroenterology & Hepatology, 2021,18(9):599-612.

[25]VETRANO E, RINALDI L, MORMONE A, et al. Non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and non-viral hepatocarcinoma: pathophysiological mechanisms and new therapeutic strategies[J].  Biomedicines, 2023,11(2):468.

[26]TANASE D M, GOSAV E M, COSTEA C F, et al. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD)[J].  Journal of Diabetes Research, 2020,2020:3920196.

[27]DEWIDAR B, KAHL S, PAFILI K, et al. Metabolic liver di-sease in diabetes-From mechanisms to clinical trials[J].  Metabolism: Clinical and Experimental, 2020,111S:154299.

[28]TANG C, KONG L Y, SHAN M Y, et al. Protective and ameliorating effects of probiotics against diet-induced obesity: a review[J].  Food Research International (Ottawa, Ont), 2021,147:110490.

[29]ZHAO W Y, GUO M, FENG J, et al. Myristica fragrans extract regulates gut microbes and metabolites to attenuate hepatic inflammation and lipid metabolism disorders via the AhR-FAS and NF-κB signaling pathways in mice with non-alcoholic fatty liver disease[J].  Nutrients, 2022,14(9):1699.

[30]ADESHIRLARIJANEY A, GEWIRTZ A T. Considering gut microbiota in treatment of type 2 diabetes mellitus[J].  Gut Microbes, 2020,11(3):253-264.

[31]SMIRNOVA E, MUTHIAH M D, NARAYAN N, et al. Metabolic reprogramming of the intestinal microbiome with functional bile acid changes underlie the development of NAFLD[J].  Hepatology (Baltimore, Md), 2022,76(6):1811-1824.

[32]LEUNG H, LONG X X, NI Y Q, et al. Risk assessment with gut microbiome and metabolite markers in NAFLD development[J].  Science Translational Medicine, 2022,14(648): eabk0855.

[33]SUN Y, HUANG Y C, YE F H, et al. Effects of probiotics on glycemic control and intestinal dominant flora in patients with type 2 diabetes mellitus: a protocol for systematic review and meta-analysis[J].  Medicine, 2020,99(46):e23039.

[34]XIONG R, ZHAO C Y, ZHONG M, et al. Effects of Shenqi compound on intestinal microbial metabolites in patients with type 2 diabetes: a protocol for systematic review and meta analysis[J].  Medicine, 2020,99(48): e23017.

[35]FENG J Y, LIU Y J, CHEN J J, et al. Marine chitooligosaccharide alters intestinal flora structure and regulates hepatic inflammatory response to influence nonalcoholic fatty liver di-sease[J].  Marine Drugs, 2022,20(6):383.

[36]DROD K, NABRDALIK K, HAJZLER W, et al. Metabo-lic-associated fatty liver disease (MAFLD), diabetes, and cardiovascular disease: associations with fructose metabolism and gut microbiota[J].  Nutrients, 2021,14(1):103.

[37]KUO Y S, HU M H, CHAN W H, et al. Evaluation of the preventive effects of fish oil and sunflower seed oil on the pathophysiology of Sepsis in endotoxemic rats[J].  Frontiers in Nutrition, 2022,9:857255.

[38]LI Y, WANG C W, LU J Y, et al. PPAR δ inhibition protects against palmitic acid-LPS induced lipidosis and injury in cultured hepatocyte L02 cell[J].  International Journal of Medical Sciences, 2019,16(12):1593-1603.

[39]LI D, LI Y J, YANG S J, et al. Diet-gut microbiota-epigene-tics in metabolic diseases: from mechanisms to therapeutics[J].  Biomedecine & Pharmacotherapie, 2022,153:113290.

[40]ZOU J J, XIANG Q, TAN D N, et al. Zuogui-Jiangtang-Qinggan-Fang alleviates high-fat diet-induced type 2 diabetes mellitus with non-alcoholic fatty liver disease by modulating gut microbiome-metabolites-short chain fatty acid composition[J].  Biomedecine & Pharmacotherapie, 2023,157:114002.

[41]CHEN H R, SUN Y, ZHAO H D, et al. α-Lactalbumin peptide Asp-Gln-Trp alleviates hepatic insulin resistance and mo-dulates gut microbiota dysbiosis in high-fat diet-induced NAFLD mice[J].  Food & Function, 2022,13(19):9878-9892.

[42]JIN W J, CHO S, LAXI N, et al. Hepatoprotective effects of Ixeris chinensis on nonalcoholic fatty liver disease induced by high-fat diet in mice: an integrated gut microbiota and metabolomic analysis[J].  Molecules (Basel, Switzerland), 2022,27(10):3148.

[43]潘虹,王俏梅. 高脂膳食所致大鼠高血糖及其与肠道菌群、代谢产物的相关性实验研究[J].  药物分析杂志, 2019,39(2):280-285.

[44]朱晓振,张菡菡,孟现尧,等. 短链脂肪酸改善2型糖尿病小鼠胰岛素抵抗和胰腺损伤[J]. 现代食品科技, 2020,36(8):1-7.

[45]DENG M J, QU F, CHEN L, et al. SCFAs alleviated steatosis and inflammation in mice with NASH induced by MCD[J].  The Journal of Endocrinology, 2020,245(3):425-437.

[46]HONG Y, SHENG L L, ZHONG J, et al. Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice[J].  Gut Microbes, 2021,13(1):1-20.

[47]WANG P, WANG J, LI D T, et al. Targeting the gut microbiota with resveratrol: a demonstration of novel evidence for the management of hepatic steatosis[J].  The Journal of Nutritional Biochemistry, 2020,81:108363.

[48]CHEN J Z, VITETTA L. Gut microbiota metabolites in NAFLD pathogenesis and therapeutic implications[J].  International Journal of Molecular Sciences, 2020,21(15):5214.

[49]YANG T T, YANG H, HENG C, et al. Amelioration of no-nalcoholic fatty liver disease by sodium butyrate is linked to the modulation of intestinal tight junctions in db/db mice[J].  Food & Function, 2020,11(12):10675-10689.

[50]LI H S, XI Y F, LIU H L, et al. Gypenosides ameliorate high-fat diet-induced non-alcoholic steatohepatitis via farnesoid X receptor activation[J].  Frontiers in Nutrition, 2022,9:914079.

[51]FANG X Y, MIAO R Y, WEI J H, et al. Advances in mul-tiomics study of biomarkers of glycolipid metabolism disorder[J].  Computational and Structural Biotechnology Journal, 2022,20:5935-5951.

[52]ZHONG S Q, CH?VRE R, CASTA?O MAYAN D, et al. Haploinsufficiency of CYP8B1 associates with increased insulin sensitivity in humans[J].  The Journal of Clinical Investigation, 2022,132(21): e152961.

[53]?LVAREZ J, FERNNDEZ REAL J M, GUARNER F, et al. Gut microbes and health[J].  Gastroenterologia y Hepatologia (English Edition), 2021,44(7):519-535.

(本文編辑牛兆山)

猜你喜欢

胆汁酸菌群脂肪酸
胆汁酸代谢与T2DM糖脂代谢紊乱的研究概述
“云雀”还是“猫头鹰”可能取决于肠道菌群
揭开反式脂肪酸的真面目
总胆汁酸高是肝脏出问题了吗?
“水土不服”和肠道菌群
胆汁酸代谢在慢性肝病中的研究进展
揭开反式脂肪酸的真面目
新生儿胆红素和总胆汁酸测定的临床意义
肉牛剩余采食量与瘤胃微生物菌群关系
鳄梨油脂肪酸组成分析