关于多发性硬化症拟线性趋化模型解的全局有界性
2023-07-28许璐辛巧李亚峰
许璐 辛巧 李亚峰
摘要:研究一类拟线性抛物-抛物-常微分方程的多发性硬化症趋化模型.在合适的参数假设下,证明了该模型经典解的全局有界性.
关键词:多发性硬化症;趋化模型;有界性;拟线性
中图分类号:O 175.26 文献标志码:A 文章编号:1001-988Ⅹ(2023)04-0023-06
参考文献:
[1] LOMBARDO M C,BARRESI R,BILOTTA E,et al.Demyelination patterns in a mathematical model of multiple sclerosis[J].Journal of Mathematical Biology,2017,75:373.
[2] BILOTTA E,GARGANO F,GIUNTA V,et al.Axi symmetric solutions for a chemotaxis model of multiple sclerosis[J].Ricerche DI Matematica,2019,68:281.
[3] KHONSARI R H,VINCENTC,NICK M.The origins of concentric demyelination:self-organization in the human brain[J].Plos One,2007,2(1):150.
[4] DESVILLETTES L,GIUNTA V.Existence and regularity for a chemotaxis model involved in the modeling of multiple sclerosis[J].Ricerche DI Matematica,2017,70:99.
[5] HU Xiao-li,FU Sheng-mao,AI Shang-bing.Global asymptotic behavior of solutions for a parabolic-parabolic-ODE chemotaxis system modeling multiple sclerosis[J].Journal of Differential Equations,2020,269(9):6875.
[6] DESVILLETTES L,GIUNTA V,MORGAN J,et al.Global well-posedness and nonlinear stability of a chemotaxis system modeling multiple sclerosis[J].
Proceedings of the Royal Society of Edinburgh Section A:Mathematics,2022,152(4):826.
[7] HU Xiao-li,FU Sheng-mao.Global boundedness and stability for a chemotaxis model of Bolós concentric sclerosis[J].Mathematical Biosciences and Engineering,2020,17(5):5134.
[8] ISHIDA S,SEKI K,YOKOTA T.Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains[J].Journal of Differential Equations,2014,256:2993.
[9] HORSTMANN D,WINKLER M.Boundedness vs.blow-up in a chemotaxis system[J].Journal of Differential Equations,2005,215(1): 52.
[10] KOWALCZYK R,SZYMANSKA Z.On the global existence of solutions to an aggregation model[J].Journal of Mathematical Analysis & Applications,2008,343:379.
[11] ZHANG Qing-shan,LI Yu-xiang.Boundedness in a quasilinear fully parabolic Keller-Segel system with Logistic source[J].Ztschrift für Angewandte Mathematik und Physik ZAMP,2015,66(5):2473.
[12] TANG Qing-quan,XIN Qiao,MU Chun-lai.Boundedness of the higher-dimensional quasilinear chemotaxis system with generalized logistic source[J].Acta Mathematica Scientia,2020,40(3):713.
[13] TAO You-shan,WINKLER M.Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity[J].Journal of Differential Equations,2012,252(1):692.
(責任编辑 马宇鸿)