储藏过程中稻米品质的变化
2023-07-21陈虎贾旭东赵飞刘建
陈虎 贾旭东 赵飞 刘建
摘 要:稻米品质不仅受水稻品种遗传特性和栽培条件影响,还会在储藏过程中发生变化。稻米的部分品质指标受储藏温度或储藏时间影响较大。稻米在储藏过程中,淀粉和蛋白质在含量方面的变化很小,但在成分及微观结构方面变化明显,从而影响蒸煮品质;挥发性物质的变化可能使稻米品质变劣,也可能使稻米具有独特的风味。综述了稻米的部分外观品质指标、蒸煮品质指标以及化学物质在不同储藏条件下发生的变化,以期为相关研究提供助力。
关键词:储藏条件;稻米品质;指标变化
Changes in Rice Quality During Storage
CHEN Hu , JIA Xu-dong , ZHAO Fei* , LIU Jian*
(Tianjin Agricultural University, College of Agronomy & Resource and Environment, Tianjin 300384, China)
Abstract: Rice quality is not only affected by genetic characteristics of rice varieties and cultivation conditions, but also changes during storage. Some quality indexes of rice were affected by storage temperature or storage time. During rice storage, the content of starch and protein changed little, but the composition and microstructure changed obviously, which affected the cooking quality. The changes of volatile substances may make the quality of rice deteriorate, and may also make the rice have a unique flavor. In this paper, some appearance quality indexes, cooking quality indexes and the changes of chemical substances in rice under different storage conditions were reviewed in order to provide support for related research.
Key words: Storage conditions; Rice quality; Index change
水稻是主要的粮食作物,全世界半数以上的人口以稻米为主食——在中国这个比例更高。近年来,随着国民生活水平的提高,人们对稻米品质的要求不断提高。稻米品质不仅受水稻品种遗传特性和栽培条件影响,还会在储藏过程中发生变化。稻谷储藏是水稻收获后延长保质期和展现商业价值的重要步骤,在储藏期间稻谷的化学和物理性质会发生许多变化[1]。相比新鲜稻米,储藏过的稻米具有更好的制粉品质[2],并且往往会产生独特的风味而受人喜爱[3]。良好的稻谷储存系统,对维持谷物供应及谷物品质至关重要[4]。
储藏过程中稻谷老化的机制很复杂,可能受多种内源酶的影响,淀粉、蛋白质和脂类的含量及结构发生改变,从而导致稻米质量发生变化[2,5]。淀粉晶层结构、链长分布的变化,影响了稻米热力学特性,从而使蒸煮难易程度发生变化。稻米在储藏期间,外观和质地会受到影响,外观指标如亮度、白度、a*和b*值等受储藏温度影响较大[6,7],而质地指标如硬度和内聚性等主要受储藏时间影响较大[3]。储藏过的稻米整体表现为颜色发暗、亮度减少,其米饭质地表现为硬度增加、粘度降低,米饭适口性下降。
1 稻米外观品质的变化
稻米在储藏期间经常发暗,Ziegler等的研究表明,储藏温度的升高和时间的延长会使黑米和红米谷物亮度(L)值随着a*和b*值的增加而减少[6]。Park等发现精米因储藏变为黄色,在低温(4 ℃)条件下储藏时b值和白度值变化很小;在较高温度(20 ℃以上)条件下储藏,1个月内b值迅速增加,白度值则迅速减少[7]。有学者认为,稻米白度下降和黄度增加与美拉德非酶褐变有关,通过美拉德反应使糖苷键和肽键断裂而形成羰基和氨基化合物[8]。
种皮颜色深浅与植物色素浓度有关,稻米在储藏过程中植物色素浓度会发生改变,种皮颜色的深浅也相应产生变化,如花青素和多酚氧化降解往往使红米变成深红色[9]。与颜色有关的抗氧化化合物受储藏温度影响较大,高温储藏使花青素浓度显著降低[10]。Yamuangmorn等发现,紫米储藏1个月后,花色苷含量在迅速下降后又逐渐升高,并且随着储藏时间增加,紫米抗氧化能力逐渐增加[11]。有学者认为,稻米在储藏期间颜色的改变,可能是因为霉菌侵染、水分和温度使籽粒内部发生改变[12]。
2 稻米蒸煮品质的变化
稻米储藏期间糊化特性可能发生显著变化。峰值粘度會随着储藏温度的升高和持续时间的延长而增加[12],并且不管储藏温度如何变化,崩解值均降低,回生值均增加[7]。储藏期间稻米蒸煮品质的变化主要归因于淀粉和其他物质的相互作用。淀粉和蛋白质通过氢键相互作用[13],形成不溶于水、耐高温的抗消化淀粉,降低了消化率[14-16]。储藏时间越长,可溶性淀粉越少[17]。稻米吸水率随着储藏时间的延长而增大,亦会使淀粉凝胶化加强,使得稻米不易于蒸煮,最终增加了蒸煮时间[18]。储藏使淀粉结晶区加强,从而使淀粉崩解值、峰值粘度降低,抗溶胀性增加[19]。
张玉荣等研究发现,随着储藏年限延长,籼、粳稻加工成的蒸谷米吸水率、体积膨胀率呈上升趋势,与储藏1 a的稻谷相比,储藏4 a的籼、粳稻加工成的蒸谷米吸水率分别增加49.1%和35.9%,体积膨胀率分别增加70.6%和66.6%[20]。Guo等研究影响稻米糊化特性的关键蛋白发现,醇溶蛋白增加了最终粘度,球蛋白降低了峰值粘度、崩解值和最终粘度,同时增加了糊化起始时间,谷蛋白增加了峰值粘度、崩解值、峰值时间以及最终粘度,并把这一系列的改变归因于稻米老化后不同蛋白与淀粉的联结度不同[21]。刘桃英等将米粉与大米蛋白混合,发现随着蛋白量的增加,淀粉溶胀性和溶解性均下降,峰值粘度(PV)降低,糊化温度和回生值(SB)升高,淀粉糊化受到抑制并降低了蒸煮后米饭的粘度[22]。储藏促进了稻米脂肪酸的分解与蛋白质的氧化,所生成的产物均与淀粉表面结合形成复合物,抑制淀粉膨胀,使蒸煮后的米饭硬度上升、粘度下降[23-25]。
一般认为,粘度较大、硬度较低的米饭具有较好的适口性。直链淀粉含量低的稻米蒸煮成的米饭柔软粘稠,而直链淀粉含量高的稻米蒸煮成的米饭则较硬较蓬松。与储藏过的稻米相比,刚收获的稻米蒸煮成的米饭粘度较大。稻米经过储藏老化,米饭硬度上升、粘度下降。Wiset等在15 ℃和20 ℃下储藏稻米,发现米饭硬度、粘结性和咀嚼性提高而粘附性降低,并且较高的储藏温度会提高这些趋势[26]。陆益钡等用不同包装方式在高温高湿条件下贮藏大米样品,随着贮藏时间变长,米饭硬度上升、弹性及黏着度下降,弹性在贮藏的第14天到第21天期间下降较明显,黏着度在贮藏的前7 d下降最为迅速[17]。张玉荣等将储藏年限为1~4 a的粳、籼稻谷加工成蒸谷米并对所制米饭的质构特性等指标进行测定分析,发现随储藏年限的增加,粳型蒸谷米的硬度显著上升、黏着性显著下降,咀嚼性上升,其他指标均无显著差异[20],这可能是由于蒸谷米加工过程中,籽粒内部水分吸收充足,淀粉与其他物质已形成较为稳定的结构,从而使其品质受储藏年限影响较小。
米饭硬度增加,是由于稻米在储藏过程中脂肪分解产生的游离脂肪酸包藏在直链淀粉的螺旋结构中,使稻米糊化所需的水分难以通过,导致淀粉粒的强度增加[27];米饭弹性下降,归因于稻米在储藏期间水分含量较低,蒸煮加热吸水过程中米粒腹背部产生水分差,体积偏差引起米粒龟裂,淀粉粒从龟裂处流失,米饭失去弹性[28,29];米饭黏着度下降,是由于在储藏过程中大米细胞壁变得坚固,米饭蒸煮变困难、品质变差[30]。
3 稻米化学物质的变化
3.1 淀粉
淀粉是稻米中主要的碳水化合物,是影响品质的重要因素。淀粉的含量、种类、链长和形态结构影响着稻米的蒸煮品质。直链淀粉的含量决定了加工和烹饪的难易程度,因为它与保持淀粉结构的能力有关[31-33]。由于脂质的存在,直链淀粉既可以作为稀释剂,又可以作为溶胀抑制剂[34]。淀粉颗粒的大小、支链淀粉长链比率与糊化温度有较大相关性[35]。淀粉结构变化、颗粒分布决定了稻米的热性质和亲水力[36]。
稻米在储藏老化过程中,淀粉和蛋白质含量的变化很小,但其成分以及微观结构变化明显[34,37,38]。由于储藏过程中淀粉脱分支酶的作用,储藏后稻米不溶性直链淀粉含量增加,支链淀粉含量减少[39]。有研究证明随着储藏时间延长直链淀粉含量下降,并将其归因于淀粉酶的作用[40]。随着储藏时间的延长,淀粉颗粒尺寸变小,并逐渐崩解成较小颗粒,边缘棱角变得模糊不清[23,41],这是由于储藏过程中蛋白质的存在限制了淀粉分子氢键的形成[42]。Huang等的研究表明,不同储藏条件下,内源淀粉酶会对淀粉长、短链的比例产生影响[43]。稻米在21 ℃和38 ℃条件下储藏9个月后,由于酶促作用,短链淀粉的相对百分比会增加[44,45]。在粳稻加速陈化的试验中,淀粉分子的结构伴随着部分官能团的缺失和引入发生了变化,随着储藏时间的延长,不同品种大米的淀粉有序度均有所升高,淀粉抗消化能力增强,并且结晶区结构特征减弱、非结晶区结构特征增强[45]。
3.2 蛋白质
稻米蛋白质主要分为清蛋白、球蛋白、醇溶蛋白和谷蛋白。有研究认为,对稻米老化贡献度最大的是清蛋白,其次是球蛋白和醇溶蛋白,最后是谷蛋白[21]。与新米相比,储藏过的稻米蛋白质的含量变化较小,不同蛋白质组分含量受储藏条件的影响不同[46,47],清蛋白和球蛋白含量受储藏时间和温度影响较大[48];醇溶蛋白和谷蛋白微观结构的变化较大[34],例如游离巯基含量显著降低,二硫键含量和蛋白质表面疏水性增高[49]。赵卿宇等的研究表明,随着储藏时间延长,大米蛋白持水性和起泡性呈下降趋势,持油性呈上升趋势,并且高温条件下变化更明显[50]。在高温高湿的储藏条件下,醇溶蛋白和谷蛋白的氨基酸(Lys、Arg、His、Tyr等)侧链易受自由基影响发生氧化产生二硫键和羰基[41,51,52],导致观察到大分子量的蛋白质积累[53]。谷蛋白α-螺旋含量在储藏过程中表现为先降低后升高的趋势,无规则卷曲表现为先升高后降低,蛋白的功能性质随着储藏时间的延长而下降[54]。储藏前期α-螺旋转变为β-折叠和β-转角从而导致蛋白质分子结构变得疏松,这可能是由于淀粉的存在削弱了肽链之间的氢键[23],或是蛋白质的氧化解开了α-螺旋[5]。
3.3 脂類
稻米的脂肪含量越高,稻米适口性和香气越好[55]。稻米中脂肪的化学性质活跃,受氧气和脂肪酶的作用,易酸败、水解和氧化变质,产生脂肪酸、醛类和酮类化合物[56]。代谢组学认为,储藏会导致稻米代谢产物的含量发生变化,从而可能影响稻米的品质[57]。糙米在储藏过程中的主要代谢途径有亚油酸代谢、脂肪酸生物合成、类固醇生物合成[58],棕榈油酸、胆固醇、亚油酸和月桂酸是以上3种代谢途径的主要代谢物[59],是储藏过程中影响稻米品质的重要成分[60]。
随着储藏时间延长稻米脂肪酸值增加,并且较高的储藏温度会加快脂质的分解,增加脂肪酸度[61]。Park等在较高温度(30 ℃和40 ℃)下储藏的精米脂肪酸度较高,在较低温度(4 ℃和20 ℃)下储藏则脂肪酸度较低[7]。脂质水解产生游离脂肪酸和氧化产生过氧化羟基型脂肪酸,可能与储藏过程中脂质分布发生变化有关[3]。周等認为,当细胞膜受损时会释放脂肪酶使脂质水解[34],脂类的降解在碾米过程中破坏糊粉层时就已经开始了[62]。Scariot等发现,在精米储藏过程中较高的干燥空气温度更容易使脂质降解产生脂肪酸[63],这可能是由于较高的干燥空气温度使细胞膜破裂受损。
3.4 挥发性物质
前人已确定了主要的香气化合物,主要包括饱和和不饱和醛、醇和环状化合物,其中己醛、1-辛稀-3-醇和2-戊基呋喃是稻米陈化的标志。在香米中,2-乙酰基-1-吡咯啉(2AP)是类似于爆米花味道的化合物,已被证实为最重要的香气化合物[64-66];己醛、辛醛、壬醛、1-戊醇和1-辛醇等也被认为是重要的香气成分[67,68]。Griglione等研究发现,25个水稻品种除Venere外,其他品种在储藏过程中庚醛、辛酸、2-乙基-1-己醇含量均增加,并确定2-(E)-辛烯醛为所有水稻品种陈化通用标记,2-戊基呋喃、1-辛烯-3-醇和癸-(2E)-烯醛为特定品种的陈化标记[69]。无论储藏温度如何,脂类氧化产生的挥发物都会随着时间的增加而增加。高温储藏会加快挥发性物质的产生,而低温储藏可以减缓挥发性物质的增加速率,即使低温储藏一段时间后转到高温条件也有延缓的效果[70]。Zhao等发现,储藏期间己醛、辛酸、2-(E)-辛烯醛和葵醛的浓度增加,储藏75 d后不同温度下香气活性物质浓度均发生显著变化,并且高温储藏会促进变化趋势[71]。刘强等在高温40 ℃、相对湿度70%条件下短期储藏糙米,应用气相离子迁移谱(GC-IMS)检测乙醇、戊醇、辛酸、2-丙酮等挥发性物质,发现乙酸丙酯对应的离子迁移信号可以作为高温储藏的重要标识物质[72]。虫害侵染也会对稻米脂肪酸代谢产生影响,随着侵染时间延长,挥发性物质由增加转为整体下降[73]。
4 总结与展望
稻米储藏期间,受储藏温度、湿度和储藏时间,以及胚乳中酶和外源细菌的影响,多种化学元素发生变化,如醇溶蛋白和谷蛋白的降低、羰基化合物的形成,以及淀粉精细结构的变化、不饱和脂肪酸的减少等。这些变化使细胞更耐热更不易破坏,水分进出困难,水热过程中淀粉浸出能力降低,影响了淀粉颗粒的水合化以及膨胀性,从而使稻米蒸煮困难,蒸煮后的米饭硬度上升、粘度下降。
目前对稻米储藏期间单一化学物质的变化研究较多,但对储藏期间多种化学物质之间的相互作用研究较少。已有关于食品加工的研究证明,淀粉-脂质复合物和淀粉-脂质-蛋白复合物的存在,会影响食品的食味品质及热学性质。虽然已有少量学者提出稻米储藏期间淀粉复合物的产生会影响稻米品质,但对其结构、特性以及形成机理的研究仍较少。
多数研究认为稻谷在储藏过程中品质会变劣,但也有研究认为稻谷可以通过储藏获得独特的风味,因此或可利用适宜的储藏条件使稻谷品质变得更优。另外,储藏期间对稻谷和环境的实时检测,有利于进一步研究储藏过程中稻谷的风味变化,从而通过适当的储藏使稻谷获得更高的商业价值。
参考文献:
[1] Chrastil J. Chemical and physicochemical changes of rice during storage at different temperatures[J]. Journal of Cereal Science, 1990, 11(1): 71-85.
[2] Tong C, Gao HY, Luo SJ, et al. Impact of Postharvest Operations on Rice Grain Quality: A Review[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18(3): 626-640.
[3] Saikrishna A, Dutta S, Subramanian V, et al. Ageing of rice: A review[J]. Journal of Cereal Science, 2018, 81: 161-170.
[4] Moses JA, Jayas DS, Alagusundaram K. Climate Change and its Implications on Stored Food Grains[J]. Agricultural Research, 2015, 4(1): 21-30.
[5] Sun WZ, Zhou FB, Sun DW, et al. Effect of Oxidation on the Emulsifying Properties of Myofibrillar Proteins[J]. Food and Bioprocess Technology, 2013, 6(7): 1703-1712.
[6] Ziegler V, Ferreira CD, Hoffmann JF, et al. Cooking quality properties and free and bound phenolics content of brown, black, and red rice grains stored at different temperatures for six months[J]. Food Chemistry, 2018, 242: 427-434.
[7] Park CE, Kim YS, Park KJ, et al. Changes in physicochemical characteristics of rice during storage at different temperatures[J]. Journal of Stored Products Research, 2012, 48: 25-29.
[8] Sirisoontaralak P, Noomhorm A. Changes in physicochemical and sensory-properties of irradiated rice during storage[J]. Journal of Stored Products Research, 2007, 43(3): 282-289.
[9] Hayashi S, Yanase E. A study on the color deepening in red rice during storage[J]. Food Chemistry, 2016, 199: 457-462.
[10] Zhou ZK, Chen XS, Zhang M, et al. Phenolics, flavonoids, proanthocyanidin and antioxidant activity of brown rice with different pericarp colors following storage[J]. Journal of Stored Products Research, 2014, 59: 120-125.
[11] Yamuangmorn S, Jumrus S, Jamjod S, et al. Stabilizing Grain Yield and Nutrition Quality in Purple Rice Varieties by Management of Planting Elevation and Storage Conditions[J]. Agronomy, 2021, 11(1): 83.
[12] Haydon KN, Siebenmorgen TJ. Impacts of Delayed Drying on Discoloration and Functionality of Rice[J]. Cereal Chemistry, 2017, 94(4): 683-692.
[13] Butardo VM, Sreenivasulu N, Juliano BO. Improving Rice Grain Quality: State-of-the-Art and Future Prospects[A]. In: Sreenivasulu N(eds.). Rice Grain Quality: Methods and Protocols[M]. Clifton: Humana Press, 2019: 19-55.
[14] Amagliani L, O'Regan J, Kelly AL, et al. The composition, extraction, functionality and applications of rice proteins: A review[J]. Trends in Food Science & Technology, 2017, 64: 1-12.
[15] Chi CD, Li XX, Zhang YP, et al. Understanding the mechanism of starch digestion mitigation by rice protein and its enzymatic hydrolysates[J]. Food Hydrocolloids, 2018, 84: 473-480.
[16] 张玉荣,刘敬婉,周显青,等.CO2气调解除后大米蒸煮特性、质构特性及食味品质的变化研究[J].粮食与饲料工业,2015(9):12-16.
[17] 陆益钡,朱乐天,吕春霞,等.包装方式对大米品质的影响[J].食品与发酵工业,2021,47(14):88-93.
[18] 周顯青,祝方清,张玉荣,等.不同储藏年限稻谷的蒸煮特性及其米饭的食味和质构特性分析[J].河南工业大学学报(自然科学版),2020,41(1):96-103.
[19] Zhou ZK, Robards K, Helliwell S, et al. Effect of rice storage on pasting properties of rice flour[J]. Food Research International, 2003, 36(6): 625-634.
[20] 张玉荣,周显青,彭超.不同储藏年限稻谷的品质及蒸谷米加工适应性分析[J].食品科学,2021,42(9):39-45.
[21] Guo YB, Cai WR, Tu K, et al. Key Proteins Causing Changes in Pasting Properties of Rice During Aging[J]. Cereal Chemistry, 2015, 92(4): 384-388.
[22] 刘桃英,刘成梅,付桂明,等.大米蛋白对大米粉糊化性质的影响[J].食品工业科技,2013,34(2):97-99.
[23] Shi JY, Zhang T, Wang TT, et al. Effects of interaction between rice glutelin and starch on starch gelatinization in a simulated storage system[J]. Journal of Stored Products Research, 2020, 88(3): 101660.
[24] Tulyathan V, Leeharatanaluk B. CHANGES IN QUALITY OF RICE (ORYZA SATIVA L.) CV. KHAO DAWK MALI 105 DURING STORAGE[J]. Journal of Food Biochemistry, 2007, 31(3): 415-425.
[25] 贾温倩,张威,舒在习.不同储藏条件对稻米蒸煮特性及挥发性成分的影响[J].食品科技,2019,44(12):183-192.
[26] Wiset L, Laoprasert P, Borompichaichartkul C, et al. Effects of in-bin aeration storage on physicochemical properties and quality of glutinous rice cultivar RD 6[J]. Australian Journal of Crop Science, 2011, 5(6): 635-640.
[27] 夏吉庆,郑先哲,刘成海.储藏方式对稻米黏度和脂肪酸含量的影响[J].农业工程学报,2008,24(11):260-263.
[28] 郭亚丽,李芳,洪媛,等.大米理化成分与米饭品质的相关性研究[J].武汉轻工大学学报,2015,34(3):1-6.
[29] 宋伟,陈瑞,刘璐.不同储藏条件下糙米质构和蒸煮品质的规律变化及相关性研究[J].中国食物与营养,2011,17(3):36-40.
[30] Perdon AA, Siebenmorgen TJ, Buescher RW, et al. Starch Retrogradation and Texture of Cooked Milled Rice During Storage[J]. Journal of Food Science, 1999, 64(5): 828-832.
[31] 窦志.灌浆期开放式增温对水稻籽粒灌浆和品质的影响及氮素粒肥的调控效应[D].南京:南京农业大学,2017.
[32] Zhang CQ, Zhou LH, Zhu ZB, et al. Characterization of Grain Quality and Starch Fine Structure of Two Japonica Rice (Oryza Sativa) Cultivars with Good Sensory Properties at Different Temperatures during the Filling Stage.[J]. Journal of Agricultural and Food Chemistry, 2016, 64(20): 4048-4057.
[33] Wei CX, Qin FL, Zhou WD, et al. Comparison of the crystalline properties and structural changes of starches from high-amylose transgenic rice and its wild type during heating[J]. Food Chemistry, 2011, 128(3): 645-652.
[34] Zhou Z, Robards K, Helliwell S, et al. Ageing of Stored Rice: Changes in Chemical and Physical Attributes[J]. Journal of Cereal Science, 2002, 35(1): 65-78.
[35] Lu DL, Shen X, Cai XM, et al. Effects of heat stress during grain filling on the structure and thermal properties of waxy maize starch[J]. Food Chemistry, 2014, 143: 313-318.
[36] Gu XT, Huang TQ, Ding MQ, et al. Effects of short-term heat stress at the grain formation stage on physicochemical properties of waxy maize starch[J]. Journal of the Science of Food and Agriculture, 2018, 98(3): 1008-1015.
[37] 趙娟红,林亲录,孙术国,等.稻谷老化机制研究进展[J].食品工业科技,2017,38(23):326-329.
[38] 施利利,张欣,丁得亮,等.陈化稻米的主要品质指标的变化研究[J].食品科技,2014,39(10):166-169.
[39] 费月新,曹玉洁,吴敏,等.稻米储藏品质劣变机制研究进展与展望[J].中国稻米,2018,24(5):22-26.
[40] Ziegler V, Ferreira CD, Goebel JTS, et al. Changes in properties of starch isolated from whole rice grains with brown, black, and red pericarp after storage at different temperatures[J]. Food Chemistry, 2017, 216: 194-200.
[41] 权萌萌,鞠兴荣,石嘉怿,等.脂肪氧合酶催化亚油酸氧化对稻米醇溶蛋白的影响[J].粮食与饲料工业,2016(4):27-30,36.
[42] Niu LY, Wu LY, Xiao JH. Inhibition of gelatinized rice starch retrogradation by rice bran protein hydrolysates[J]. Carbohydrate Polymers, 2017, 175: 311-319.
[43] Huang YC, Lai HM. Characteristics of the starch fine structure and pasting properties of waxy rice during storage[J]. Food Chemistry, 2014, 152: 432-439.
[44] Patindol J, Wang YJ, Jane JL. Structure-Functionality Changes in Starch Following Rough Rice Storage[J]. Starch - Starke, 2005, 57(5): 197-207.
[45] 张玉荣,梁彦伟,刘敬婉.高温高湿储藏条件对粳稻淀粉微观结构及挥发性物质的影响[J].河南工业大学学报(自然科学版),2018,39(6):8-15,35.
[46] 张玉荣,周显青,刘敬婉.加速陈化对粳稻的营养组分及储藏、加工品质的影响[J].河南工业大学学报(自然科学版),2017,38(5):37-44.
[47] 张天.不同施肥处理糙米贮藏过程中蛋白质和淀粉的变化对质构特性的影响[D].沈阳:沈阳农业大学,2020.
[48] 李凡.籼粳杂交稻稻谷贮藏过程品质变化及贮藏特性的研究[D].杭州:浙江大学,2019.
[49] Zhao QY, Lin JH, Wang C, et al. Protein structural properties and proteomic analysis of rice during storage at different temperatures[J]. Food Chemistry, 2021, 361: 130028.
[50] 趙卿宇,林佳慧,沈群.储藏温度对大米蛋白功能特性的影响[J].食品科学,2021,42(13):200-207.
[51] Wu WTL. Botox Facial Slimming/Facial Sculpting: The Role of Botulinum Toxin-A in the Treatment of Hypertrophic Masseteric Muscle and Parotid Enlargement to Narrow the Lower Facial Width[J]. Facial Plastic Surgery Clinics of North America, 2010, 18(1): 133-140.
[52] Thomas JA, Mallis RJ. Aging and oxidation of reactive protein sulfhydryls[J]. Experimental Gerontology, 2001, 36(9): 1519-1526.
[53] Thanathornvarakul N, Anuntagool J, Tananuwong K. Aging of low and high amylose rice at elevated temperature: Mechanism and predictive modeling[J]. Journal of Cereal Science, 2016, 70: 155-163.
[54] 石嘉怿,张太,梁富强,等.大米谷蛋白储藏过程中结构与功能性质变化的研究[J].食品工业科技, 2021,42(6):29-34,42.
[55] Ahmed W, Butt MS, Sharif MK, et al. Effect of Storage on Cooking Quality Attributes and Fortificants Stability in Edible-Coated Iron-Folate Fortified Basmati Rice[J]. Journal of Food Processing and Preservation, 2016, 40(5): 925-933.
[56] Lee JI, Kim DW, Jang GJ, et al. Effects of different storage conditions on the metabolite and microbial profiles of white rice (Oryza sativa L.)[J]. Food Science and Biotechnology, 2019, 28(3): 623-631.
[57] Wang CY, Feng YC, Zhang S, et al. Effects of storage on brown rice (Oryza sativa L.) metabolites, analyzed using gas chromatography and mass spectrometry[J]. Food Science & Nutrition, 2020, 8(6): 2882-2894.
[58] Yan SJ, Huang WJ, Gao JD, et al. Comparative metabolomic analysis of seed metabolites associated with seed storability in rice (Oryza sativa L.) during natural aging[J]. Plant Physiology and Biochemistry, 2018, 127: 590-598.
[59] Yoon MR, Lee SC, Kang MY. The lipid composition of rice cultivars with different eating qualities[J]. Journal of the Korean Society for Applied Biological Chemistry, 2012, 55(2): 291-295.
[60] Wang CY, Feng YC, Fu TX, et al. Effect of storage on metabolites of brown rice[J]. Journal of the Science of Food and Agriculture, 2020, 100(12): 4364-4377.
[61] Genkawa T, Uchino T, Inoue A, et al. Development of a low-moisture-content storage system for brown rice: Storability at decreased moisture contents[J]. Biosystems Engineering, 2008, 99(4): 515-522.
[62] Wu XJ, Li F, Wu W. Effects of rice bran rancidity on the oxidation and structural characteristics of rice bran protein[J]. LWT - Food Science and Technology, 2020, 120(C): 108943.
[63] Scariot MA, Karlinski L, Dionello RG, et al. Effect of drying air temperature and storage on industrial and chemical quality of rice grains[J]. Journal of Stored Products Research, 2020, 89: 101717.
[64] Laguerre M, Mestres C, Davrieux F, et al. Rapid discrimination of scented rice by solid-phase microextraction, mass spectrometry, and multivariate analysis used as a mass sensor[J]. Journal of Agricultural and Food Chemistry, 2007, 55(4): 1077-1083.
[65] Liberto E, Cagliero C, Sgorbini B, et al. Enantiomer identification in the flavour and fragrance fields by “interactive” combination of linear retention indices from enantioselective gas chromatography and mass spectrometry[J]. Journal of Chromatography A, 2008, 1195(1-2): 117-126.
[66] Champagne ET. Rice Aroma and Flavor: A Literature Review[J]. Cereal Chemistry, 2008, 85(4): 445-454.
[67] Mahattanatawee K, Rouseff RL. Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC-Olfactometry and GC-PFPD[J]. Food Chemistry, 2014, 154: 1-6.
[68] Maraval I, Mestres C, Pernin K, et al. Odor-active compounds in cooked rice cultivars from Camargue (France) analyzed by GC-O and GC-MS[J]. Journal of Agricultural and Food Chemistry, 2008, 56(13): 5291-5298.
[69] Griglione A, Liberto E, Cordero C, et al. High-quality Italian rice cultivars: Chemical indices of ageing and aroma quality[J]. Food Chemistry, 2015, 172: 305-313.
[70] Kaewtathip T, Charoenrein, S. Changes in volatile aroma compounds of pineapple (Ananas comosus) during freezing and thawing[J]. International Journal of Food Science & Technology, 2012, 47(5): 985-990.
[71] Zhao QY, Xue Y, Shen Q. Changes in the major aroma-active compounds and taste components of Jasmine rice during storage[J]. Food Research International, 2020, 133: 109160.
[72] 劉强,刘纪伟,田恬,等.高温胁迫下糙米短期储藏气味指纹图谱变化规律的动态分析[J].中国农业科学,2021,54(2):379-391.
[73] 单常尧.储粮害虫危害的糙米挥发性化合物变化研究[D].郑州:河南工业大学,2020.
基金项目:小站稻绿色高效栽培技术的研究应用(21YFSNSN00100)。
收稿日期:2022-06-27
作者简介:陈虎(1998-),男,研究生。
*通讯作者:赵飞(1979-),男,博士,副教授。
刘建(1970-),男,博士,副研究员。