假臭草来源植物内生真菌生物转化(+)-柠檬烯产物分析
2023-07-20杨道茂
摘要:
为了筛选能够生物转化(+)-柠檬烯的微生物,将7株假臭草内生真菌作为生物催化剂,在30 ℃,150 r·min-1下发酵6 d后,添加体积分数为0.5%的(+)-柠檬烯继续转化4 d,并采用薄层层析、气相色谱-质谱联用和核磁共振技术分析产物.结果表明:各真菌生物转化(+)-柠檬烯的主要产物为(1S,2S,4R)-柠檬烯-1,2-二醇、环氧柠檬烯、(1S,2R,4R)-柠檬烯-1,2-二醇等;菌株Alternaria Nees PS08生成唯一产物(1S,2S,4R)-柠檬烯-1,2-二醇,质量浓度达到(2.46±0.16) g·L-1.
关键词:
(+)-柠檬烯; 假臭草; 植物内生真菌; (1S,2S,4R)-柠檬烯-1,2-二醇
中图分类号: Q 53文献标志码: A 文章编号: 1000-5013(2023)04-0495-07
Analysis of Biotransformation Products of (+)-Limonene by Plant Endophytic Fungi From Praxelis clematidea
YANG Daomao
(College of Chemical Engineering, Huaqiao University, Xiamen 361021, China)
Abstract:
In order to screen microorganisms of biotransformation of (+)-limonene, seven endophytic fungi from Praxelis clematidea were used as biocatalysts. After 6 days of fermentation under 30 ℃ and 150 r · min-1, 0.5% volume fraction of (+)-limonene was added for further 4 days, the products were analyzed by Thin Layer Chromatography, Gas Chromatography-Mass Spectrometry and Nuclear Magnetic Resonance technology. The results showed that the main products of biotransformation of (+)-limonene by various fungi were (1S,2S,4R)-limonene-1,2-diol, limonene epoxide, (1S,2R,4R)-limonene-1,2-diol, etc.. The strain Alternaria Nees PS08 produced only product (1S,2S,4R)-limonene-1,2-diol, and its mass concentration reached (2.46±0.16) g·L-1.
Keywords: (+)-limonene; Praxelis clematidea; plant endophytic fungi; (1S,2S,4R)-limonene-1,2-diol
(+)-柠檬烯为柠檬精油的主要成分,属于柑橘加工过程中的副产物.由于结构简单、价格低廉,有多个可以催化的位点[1],(+)-柠檬烯一直是理想的生物转化底物模型.能转化(+)-柠檬烯的微生物种类多样,如假单胞属细菌(Pseudomonas sp.)[2-3],尖孢镰刀菌152b[4]、指状青霉菌[5-6]、黑曲霉[7]、解脂耶氏酵母[8-9].虽然在生物催化剂的筛选领域取得了巨大的进展,但微生物的低转化效率[10]和巨大的筛选工作量严重影响生物转化的推广与应用,如ROTTAVA等[11]从405株菌株中只发现8株菌株能够转化(+)-柠檬烯.针对该问题,有学者指出植物内生真菌是一个很有发展前景的筛选来源.植物内生真菌因为需要与宿主植物一起共进化来适应环境的变化,使其可能会产生丰富的酶来适应宿主[12],如海藻来源内生真菌Botryosphaeria sp.[13]能将外消旋樟脑转化为6-endo-羟基樟脑、6-exo-羥基樟脑等产物,火炬松来源内生真菌Phomopsis sp.能转化(+)-柠檬烯合成香芹酮和柠檬烯-1,2-二醇,如果底物为柑橘皮提取物,则生成单一产物柠檬烯-1,2-二醇[14],内生真菌Aspergillus fumigatus [15]能转化硫利达嗪.因此,利用植物内生真菌进行生物转化是可行的[16].
假臭草(Praxelis clematidea (Griseb.) R. M. King & H. Rob.)属于菊科植物,原产南美,现入侵亚洲和大洋州等地.由于假臭草对土壤肥力吸收力强,严重影响果树的生长,此外,它能分泌一种有毒的恶臭味,影响家畜觅食,属于入侵植物.研究发现假臭草花精油对柑橘木虱具有驱避和致死活性[17],且其总黄酮类化合物对金黄葡萄球菌有抑菌活性[18].
目前,尚未见到假臭草内生真菌用于生物转化(+)-柠檬烯的相关报道.基于此,本文以分离自假臭草内生真菌为生物转化剂,考察其生物转化产物.
1 材料与方法
1.1 药品与仪器
(+)-柠檬烯(日本东京化成工业株式会社);石油醚(60~90 ℃)、无水乙醇、乙酸乙酯(上海市国药试剂有限公司);(1S,2S,4R)-(+)-二戊烯-1,2-二醇((1S,2S,4R)-柠檬烯-1,2-二醇,CAS号:38630-75-0,美国Sigma-Aldrich公司);氘代甲醇(广东省广州赛迪菲生物科技有限公司).以上试剂均为分析纯.0.22 μm滤膜(天津市津腾实验设备有限公司);100目硅胶、GF254型薄层层析硅胶板(50 mm×200 mm,山东省青岛海洋化工厂分厂).
ZQZY-75CN型振荡培养箱(上海支楚仪器有限公司);XH-C型旋涡混合器(江苏省金坛市白塔新宝仪器厂);SW-CJ-1FD型洁净工作台(江苏省苏州安泰空气技术有限公司);H1650型医用离心机(湖南湘仪实验室仪器开发有限公司);Agilent 8860 GC System-5977B型气质联用仪器(带G4513A自动进样器,美国安捷伦科技有限公司);EYELA N-1100型旋转蒸发仪(日本东京理化器械株式会社);Bruker-500 MHz型核磁共振谱仪(瑞士布鲁克公司,由华侨大学分析测试中心提供).
1.2 微生物与培养基
7株植物内生真菌(Alternaria Nees PS01,Alternaria Nees PS06,Alternaria Nees PS07,Alternaria Nees PS09,Alternaria Nees PS10,Alternaria Nees PS18,Diaporthe amygdali PS08)由华侨大学化工学院王奇志博士馈赠.
培养基均采用沙保氏培养基:蛋白胨10 g·L-1,葡萄糖40 g·L-1(pH值为4.0~6.0).
1.3 检测方法
薄层层析(TLC)方法:展开剂为V(石油醚)∶V(乙酸乙酯)=7∶3,显色剂采用体积分数为1%的香草醛浓硫酸溶液.
气相色谱-质谱联用(GC-MS):Agilent HP-5 ms型色谱柱(30 m×250 μm ×0.25 μm),载气为氦气,进样量为1 μL.温度程序:60 ℃保持1 min,20 ℃·min-1升温到300 ℃,保持13 min.MS离子源温度为230 ℃,MS四极杆温度为150 ℃,质谱扫描范围(m/z)为60~800.
2 实验步骤
2.1 菌株活化与发酵
各测试菌株接种于装有马铃薯葡萄糖琼脂培养基的培养皿(直径为90 mm)上,在30 ℃恒温培养箱中培养6 d后,存于4 ℃冰箱中备用.
每株菌挑取一接种环菌丝接种于装有100 mL培养基的250 mL锥形瓶中,在28 ℃,150 r·min-1条件下培养6 d.
2.2 生物转化(+)-柠檬烯及产物分析
生物转化流程参考海洋真菌的生物转化流程并做细微调整[19],具体流程为:在每株菌培养了6 d的100 mL发酵液中,加入1 mL经0.22 μm滤膜过滤除菌的(+)-柠檬烯-乙醇溶液(柠檬烯溶于等体积乙醇,柠檬烯的最终体积分数为0.5%),在28 ℃,150 r·min-1条件下继续培养4 d.
转化结束,发酵液用布氏漏斗过滤后,取3 mL滤液转移到150 mm×15 mm的试管中,用等体积乙酸乙酯萃取;然后,将萃取相转移到干燥的150 mm×15 mm的试管中,并用无水硫酸钠脱水;最后,取萃取相进行TLC和GC-MS检测.
2.3 菌株PS18转化产物结构鉴定
鉴于TLC检测结果,选取包含2个转化产物的菌株PS18,按照节2.2的生物转化流程制备转化产物.具体流程为:配制2.5 L发酵培养基,分装于25瓶250 mL锥形瓶中.后续的发酵与转化步骤参考节2.1,2.2.转化结束,将发酵液用布氏漏斗过滤,等体积乙酸乙酯萃取滤液2次后,合并萃取液,用旋转蒸发仪于40 ℃,真空度-0.1 MPa下蒸发有机溶剂,最终获得转化产物3.33 g.
取少量乙酸乙酯完全溶解转化产物后,用100目硅胶拌样阴干,随后采用干法上玻璃色谱柱(300 mm×25 mm),洗脱剂体系采用V(石油醚)∶V(乙酸乙酯)为14∶2~14∶4
进行洗脱,每个梯度洗脱体积为200 mL以上,并用TLC跟踪洗脱结果.最终获得化合物PS18-1(1.56 g),PS18-2(0.87 g),用氘代甲醇溶解后进行核磁共振检测.
2.4 各菌株转化产物的质量浓度检测
建立柠檬烯-1,2-二醇标准曲线.实验步骤为:用乙酸乙酯溶解标准品并配制8.600 0 g·L-1母液,采用逐步稀释的方法,将母液稀释成不同质量浓度,随后采用节1.3的方法获得柠檬烯-1,2-二醇的峰面积-质量浓度的关系图.
挑取各菌株的菌丝接种于装有100 mL培养基的250 mL锥形瓶中,每株菌重复3次,后续发酵和生物转化步骤参考节2.1,2.2.最后,依据标准曲线求出各菌株转化产物的平均质量浓度.
3 实验结果与讨论
3.1 各菌萃取液TLC分析
将各真菌的萃取相进行TLC检测,结果如图1所示.
由图1可知:菌株PS01,PS06和PS08的条带仅发现1个主要斑点,且比移值(Rf)与标准品((1S,2S,4R)-柠檬烯-1,2-二醇)一致;菌株PS07,PS18的条带明显多出1个斑点.从真菌测序结果可知,除了菌株PS08归属于扁桃腐皮壳菌(D. amygdali),其余菌株归属于链格孢属(A. Nees),但转化产物却不相同,说明转化产物与种属之间不存在必然的联系.
3.2 转化产物GC-MS检测
各菌株转化产物总离子色谱(TIC)图,如图2所示.图2中:I为强度;t為时间.
检索NIST 17.0数据库可知,峰1匹配环氧柠檬烯(limonene oxidde),属于柠檬烯-1,2-二醇前体物质[20-22];峰2匹配化合物柠檬烯-1,2-二醇,保留时间与标准品一致;峰3匹配结果与峰2一致,推测为峰2的同分异构体;峰4未检索到匹配的化合物.
3.3 转化产物结构鉴定
化合物PS18-1,PS18-2的TLC图和TIC图,如图3所示.
经数据库检索,化合物PS18-1,PS18-2均匹配为柠檬烯-1,2-二醇,结合TLC结果,推测二者为同分异构体.
化合物PS18-1碳谱13C NMR(500 MHz,CD3OD)的化学位移(δ)为151.44,108.98,74.41,71.70,38.79,35.13,34.38,27.63,27.41,21.08.该碳谱化学位移与文献报道的化合物2((1S,2S,4R)-柠檬烯-1,2-二醇)完全一致[23],也与化合物2a的碳谱化学位移相同[24].化合物PS18-1的氢谱1H NMR(500 MHz,CD3OD)的化学位移(δ)为3.55(dd,J = 2.3,2.0,1H,H-2),1.63(m,H-3),1.91(ddd,1Heq,13.2,13.2,2.6,H-3),2.27(m,1H,H-4),1.48(m,Hax-5),1.60(m,Heq-5),1.49(m,1Hax,H-6),1.73(m,1Heq,H-6),1.20(s,3H,H-7),4.71(bs,1H,H-9),4.68(bs,1H,H-9),1.72(s,3H,H-10).该数据与化合物2的氢谱数据一致[23].
综上,化合物PS18-1归属于(1S,2S,4R)-柠檬烯-1,2-二醇.化合物PS18-1和化合物2的碳谱图和氢谱图,如图4所示.
化合物PS18-2碳谱13C NMR(500 MHz,CD3OD)的化学位移(δ)为150.11,109.39,77.83,74.45,45.23,39.79,37.87,29.77,21.02,18.91.该碳谱数据与化合物1((1S,2R,4R)-柠檬烯-1, 2-二醇)数据完全相同[23].化合物PS18-2的氢谱1H NMR(500 MHz,CD3OD)的化学位移(δ)为3.50(dd,J = 4.6,11.8,1H,H-2), 1.30(m,Hax-3), 1.83(m,1Heq,H-3), 2.06(dddd,1H,12.4,12.4,3.5,3.4,H-4),1.47(dddd,17.5,14.8,14.8,3.5,Hax-5),1.75(m,Heq-5),1.25(m,1Hax,H-6),1.63(m,1Heq,H-6),1.15(s,3H,H-7),4.71(bs,1H,H-9),4.69(bs,1H,H-9),1.72(s,3H,H-10),该数据与化合物1的氢谱数据一致[23].
综上,PS18-2归属为(1S,2R,4R)-柠檬烯-1,2-二醇.PS18-2与化合物1的碳谱图和氢谱图,如图5所示.
由图3,4,5可知:Rf较高的斑点为(1S,2S,4R)-柠檬烯-1,2-二醇,Rf较低的斑点为(1S,2R,4R)-柠檬烯-1,2-二醇.文献[25]报道柠檬烯转化为柠檬烯-1,2-二醇时,需要通过FAD结合单加氧酶(FAD-binding monooxygenase)生成柠檬烯环氧化物(limonene-1,2-epoxide),再通过环氧化物水解酶(epoxide hydrolase)生成柠檬烯-1,2-二醇.通过比较7株植物内生真菌的转化产物,可得以下2个结论.1) 来源于不同种属植物内生真菌的环氧化物水解酶存在差异,如D. amygdali PS08和A. Nees PS18,前者生成(1S,2S,4R)-柠檬烯-1,2-二醇,后者额外生成(1S,2R,4R)-柠檬烯-1,2-二醇,与文献[26]报道的氯过氧化物酶轉化(+)-柠檬烯生成柠檬烯-1,2-二醇类似,该酶在氯离子存在下生成2种手性产物.2) 即使是来源于同一种属植物内生真菌的环氧化物水解酶也可能存在差异,如A. Nees PS01与A. Nees PS06生成(1S,2S,4R)-柠檬烯-1,2-二醇,而A. Nees PS07,A. Nees PS09和A. Nees PS18则额外生成(1S,2R,4R)-柠檬烯-1,2-二醇.因此,该转化机制可能需要进一步完善.
3.4 产物的测量
柠檬烯-1,2-二醇标准曲线,如图6所示.图6中:S为峰面积;ρ为柠檬烯-1,2-二醇的质量浓度.
由图6可得标准曲线方程为S=129 971.734 13ρ-15 963.437 46,R2=0.993.
依此标准曲线,各菌株产(1S,2S,4R)-柠檬烯-1,2-二醇的质量浓度,如图7所示.
由图7可知:各菌株产(1S,2S,4R)-柠檬烯-1,2-二醇的质量浓度为0.36~2.46 g·L-1.其中,菌株PS08产量最高,达到(2.46±0.16) g·L-1,实验结果与文献[14]吻合.
4 结束语
转化产物柠檬烯-1,2-二醇(柠檬甘油)属于一种比较重要的柠檬烯含氧衍生物.研究表明,该化合物具有抗癌[27-29]和抗炎活性[28],也可作为合成其他生物活性物质前体[30-32].由于该化合物存在4种立体构型[24],手性不同的纯萜类对映体其药理活性(抗微生物活性、毒性或气味特性)存在差异[33],如(1S,2R,4R)-柠檬烯-1,2-二醇和(1S,2S,4R)-柠檬烯-1,2-二醇对新生隐球菌(Cryptococcus neoformans)的最小抑制浓度分别为184,1 470 μmol·L-1[23].因此,4种构型的化合物生物活性数据有待进一步挖掘.
采用假臭草来源植物内生真菌转化(+)-柠檬烯,转化单一且产量达克级,转化效果较理想.
参考文献:
[1] 台亚楠,董曼,任婧楠,等.柠檬烯微生物转化的研究进展[J].食品科学,2014,35(17):272-277.DOI:10.7506/spkx1002-6630-201417052.
[2] SPEELMANS G,BIJLSMA A,EGGINK G.Limonene bioconversion to high concentrations of a single and stable product, perillic acid, by a solvent-resistant Pseudomonas putida strain[J].Applied Microbiology and Biotechnology,1998,50(5):538-544.DOI:10.1007/s002530051331.
[3] MIRATA M A,HEERD D,SCHRADER J.Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264[J].Process Biochemistry,2009,44(7):764-771.DOI:10.1016/j.procbio.2009.03.013.
[4] MOLINA G,BUTION M L,BICAS J L,et al.Comparative study of the bioconversion process using R-(+)- and S-(-)-limonene as substrates for Fusarium oxysporum 152B[J].Food Chemistry,2015,174(1):606-613.DOI:10.1016/j.foodchem.2014.11.059.
[5] ADAMS A,DEMYTTENAERE J C R,DE KIMPE N.Biotransformation of (R)-(+)- and (S)-(-)-limonene to α-terpineol by Penicillium digitatum: Investigation of the culture conditions[J].Food Chemistry,2003,80(4):525-534.DOI:10.1016/S0308-8146(02)00322-9.
[6] DEMYTTENAERE J C R,VANOVERSCHELDE J,DE KIMPE N.Biotransformation of (R)-(+)- and (S)-(-)-citronellol by Aspergillus sp. and Penicillium sp., and the use of solid-phase microextraction for screening[J].Journal of Chromatography A,2004,1027(1/2):137-146.DOI:10.1016/j.chroma.2003.08.090.
[7] PARSHIKOV I A,SUTHERLAND J B.The use of Aspergillus niger cultures for biotransformation of terpenoids[J].Process Biochemistry,2014,49(12):2086-2100.DOI:10.1016/j.procbio.2014.09.005.
[8] FERRARA M A,ALMEIDA D S,SIANI A.et al.Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica[J].Brazilian Journal of Microbiology,2013,44(4):1075-1080.DOI:10.1590/S1517-838220140 05000008.
[9] VESPERMANN K A C,PAULINO B N,BARCELOS M C S,et al.Biotransformation of α- and β-pinene into flavor compounds[J].Applied Microbiology and Biotechnology,2017,101(5):1805-1817.DOI:10.1007/s00253-016-8066-7.
[10] BICAS J L,FONTANILLE P,PASTORE G M,et al.A bioprocess for the production of high concentrations of R-(+)-α-terpineol from R-(+)-limonene[J].Process Biochemistry,2010,45(4):481-486.DOI:10.1016/j.procbio.2009.11.007.
[11] ROTTAVA I,CORTINA P F,GRANDO C E,et al.Isolation and screening of microorganisms for R-(+)-limonene and (-)-β-pinene biotransformation[J].Applied Biochemistry and Biotechnology,2010,162(3):719-732.DOI:10.1007/s12010-009-8872-9.
[12] RODRIGUEZ P,GONZALEZ D,GIORDANO S R.Endophytic microorganisms: A source of potentially useful biocatalysts[J].Journal of Molecular Catalysis B: Enzymatic,2016,133(1):S569-S581.DOI:10.1016/j.molcatb.2017.02.013.
[13] DE JESUS H C R,JELLER A H,DEBONSI H M,et al.Multiple monohydroxylation products from rac-camphor by marine fungus Botryosphaeria sp.isolated from marine alga Bostrychia radicans[J].Journal of the Brazilian Chemical Society,2017,28(3):498-504.DOI:10.21577/0103-5053.20160262.
[14] BIER M C,MEDEIROS A B,SOCCOL C R.Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media[J].Fungal Biology,2017,121(2):137-144.
[15] BORGES K B,BORGES W D E S,PUPO M T,et al.Endophytic fungi as models for the stereoselective biotransformation of thioridazine[J].Applied Microbial and Cell Physiology,2007,77(3):669-674.DOI:10.1007/s00253-007-1171-x.
[16] DEMYTTENAERE J C R,WILLEMEN H M.Biotransformation of linalool to furanoid and pyranoid linalool oxides by Aspergillus niger[J].Phytochemistry,1997,47(6):1029-1036.DOI:10.1016/s0031-9422(98)80066-6.
[17] 王奇志,劉育梅,李书明,等.假臭草花精油的化学组成及对柑橘木虱的驱避和致死活性[J].昆虫知识,2018,55(1):117-125.
[18] 王伟,代光明,李书明,等.假臭草总黄酮超声波辅助提取工艺优化及抑菌活性[J].天然产物研究与开发,2017,29(8):1343-1361.
[19] 杨道茂,陈煌.近海海洋真菌生物转化(+)-柠檬烯[J].华侨大学学报(自然科学版),2020,41(1):67-71.DOI:10.11830/ISSN.1000-5013.201904020.
[20] MAROSTICA M R,PASTORE G M.Biotransformation of limonene: A review of the main metabolic pathways[J].Quimica Nova,2007,30(2):382-387.DOI:10.1590/S0100-40422007000200027.
[21] 张璐璐,范刚,何进,等.柠檬烯微生物转化及其相关酶的研究进展[J].食品工业科技,2019,40(12):317-326.DOI:10.13386/j.issn1002-0306.2019.12.051.
[22] FONTANILLE P,GROS J B,LARROCHE C.Biotransformations with crude enzymes and whole cells[M]∥Pandey A,et al.Enzyme Technology.New York:Asiatech Publishers Inc,2006.
[23] LEITO S G,MARTINS G R,MARTNEZ-FRUCTUOSO L,et al.Absolute stereochemistry of antifungal limonene-1,2-diols from Lippia rubella[J].Revista Brasileira de Farmacognosia,2020,30(4):537-543.DOI:10.1007/s43450-020-00081-x.
[24] MORIKAWA H,YAMAGUCHI J I,SUGIMURA S I,et al.Systematic synthetic study of four diastereomerically distinct limonene-1,2-diols and their corresponding cyclic carbonates[J].Beilstein Journal of Organic Chemistry,2019,15:130-136.DOI:10.3762/bjoc.15.13.
[25] SALES A,MOREIRA R C,PASTORE G M,et al.Establishment of culture conditions for biotransformation of R-(+)-limonene to limonene-1,2-diol by Colletotrichum nymphaeae CBMAI[J].Process Biochemistry,2019,78:8-14.DOI:10.1016/j.procbio.2019.01.022.
[26] GUILA S,VAZQUEZ-DUHALT R,TINOCO R,et al.Stereoselective oxidation of R-(+)-limonene by chloroperoxidase from Caldariomyces fumago[J].Green Chemistry,2008,10(6):647-653.DOI:10.1039/B719992A.
[27] LEE T K,ROH H S,YU J S,et al.Pinecone of pinus koraiensis inducing apoptosis in human lung cancer cells by activating caspase-3 and its chemical constituents[J].Chemical Biodiversity,2016,14(4):e1600412.DOI:10.1002/cbdv.201600412.
[28] LAPPAS C M,LAPPAS N T.D-Limonene modulates T lymphocyte activity and viability[J].Cellular Immunology,2012,279(1):30-41.DOI:10.1016/j.cellimm.2012.09.002.
[29] ALEXANDRINO T D,DE MEDEIROS T D M,RUIZ A L T G,et al.Structural properties and evaluation of the antiproliferative activity of limonene-1,2-diol obtained by the fungal biotransformation of R-(+)- and S-(-)-limonene[J].Chirality,2022,34(6):887-893.DOI:10.1002/chir.23439.
[30] BLAIR M,TUCK K L.A new diastereoselective entry to the (1S,4R)- and (1S,4S)-isomers of 4-isopropyl-1-methyl-2-cyclohexen-1-ol, aggregation pheromones of the ambrosia beetle Platypus quercivorus[J].Tetrahedron: Asymmetry,2009,20(18):2149-2153.DOI:10.1016/j.tetasy.2009.08.009.
[31] LEUNG A E,RUBBIANI R,GASSER G,et al.Enantioselective total syntheses of the proposed structures of prevezol B and evaluation of anti-cancer activity[J].Organic and Biomolecular Chemistry,2014,12(41):8239-8246.DOI:10.1039/C4OB01662A.
[32] LEUNG A E,BLAIR M,FORSYTH C M,et al.Synthesis of the proposed structures of Prevezol C[J].Organic Letters,2013,15(9):2198-2201.
[33] SILVA A C R D,LOPES P M,AZEVEDO M M B D,et al.Biological activities of α-pinene and β-pinene Enantiomers[J].Molecules,2012,17(6):6305-6316.DOI:10.3390/molecules17066305.
(責任编辑: 钱筠 英文审校: 刘源岗)
收稿日期: 2023-02-03
通信作者: 杨道茂(1975-),男,讲师,博士,主要从事微生物生物转化的研究.E-mail:ydmao@hqu.edu.cn.
基金项目: 国家级大学生科创项目(202110385039); 福建省个人和团队科技员项目(2022年度); 华侨大学高层次人才科研启动资金资助项目(Z15X0004)
http:∥www.hdxb.hqu.edu.cn