三维Boussinesq-MHD方程在Navier-slip边界条件下解的存在性
2023-06-21张诗语李俐玫朱芷逸
张诗语 李俐玫 朱芷逸
摘要:研究在光滑有界区域Ω中带Navier-slip边界条件的三维不可压缩Boussinesq-MHD方程组解的存在性问题.首先,运用Galerkin近似法得到方程组弱解的全局存在性.其次在H1范数意义下,通过能量估计得到关于近似解的一致先验估计,再结合标准的极限过程,Gronwall不等式以及初始条件等证明该方程组强解的局部存在唯一性.
关键词:Boussinesq-MHD方程; Navier-slip边界条件; Galerkin近似; 弱解; 强解
中图分类号:O175.29 文献标志码:A 文章编号:1001-8395(2023)05-0601-07
1预备知识
2主要结果与证明
3总结与展望
本文研究了在一般光滑有界区域中,三维不可压缩Boussinesq-MHD方程组在Navier-slip边界条件下解的存在性问题,相较于Boussinesq方程组多了磁场耦合作用,在计算中也相对较复杂.本文需要通过Galerkin近似得到逼近解,并在此基础上通过能量估计得到Boussinesq-MHD方程组的Galerkin截断解H1一致有界估计,最后结合Gronwall不等式得到强解的局部存在性.
另外,可以进一步考虑在Navier-slip边界条件下三维不可压缩Boussinesq-MHD方程组的粘性消失极限问题及其相应的衰减率问题.
参考文献
[1] BIAN D F, GUI G L. On 2-D Boussinesq equations for MHD convection with stratification effects[J]. Journal of Differential Equations,2016,261(3):1669-1711.
[2] 秦文迪. 一類二维MHD-Boussinesq方程组整体解的存在性[J]. 理论数学,2021,11(2):192-200.
[3] CHEN Q L, MIAO C X, ZHANG Z F. The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations[J]. Communications in Mathematical Physics,2007,275(3):861-872.
[4] HE C, XIN Z P. Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations[J]. Journal of Functional Analysis,2005,227(1):113-152.
[5] RAJAGOPAL K R, RUZICKA M, SRINIVASA A R. On the Oberbeck-Boussinesq approximation[J]. Mathematical Models and Methods in Applied Sciences,1996,6(8):1157-1167.
[6] ZHOU D G, LI Z L. Global well-posedness for the 2D Boussinesq equations with zero viscosity[J]. Journal of Mathematical Analysis Applications,2017,447(2):1072-1079.
[7] LAI S H, WU J H, XU X J, et al. Optimal decay estimates for 2D Boussinesq equations with partial dissipation[J]. Journal of Nonlinear Science,2021,31(16):1432-1467.
[8] 郭尚喜. 一维可压缩Navier-Stokes方程初值问题强解的整体存在性[J]. 四川师范大学学报(自然科学版),2020,43(6):768-773.
[9] XIAO Y L, XIN Z P, WU J H. Vanishing viscosity limit for the 3D magnetohydrodynamic system with a slip boundary condition[J]. Journal of Functional Analysis,2009,257(11):3375-3394.
[10] XIAO Y L, XIN Z P. On the invisid limit of the 3D Navier-Stokes equations with generalized Navier-slip boundary conditions[J]. Communications in Mathematics and Statistics,2013,1(2):259-279.
[11] 王雪娜,雍燕. 可压缩流体Navier-slip边界条件问题解的存在性研究[J]. 上海理工大学学报,2017,39(1):15-24.
[12] 杨俊. 三维Boussinesq方程组在slip边界条件下的粘性消失极限的研究[D]. 湘潭:湘潭大学,2017.
[13] 李红民. 关于几类流体方程相关极限的研究[D]. 湘潭:湘潭大学,2019.
[14] 郭连红. 一类Boussinesq方程组带Navier-slip边界条件解的存在性[J]. 数学的实践与认识,2019,49(18):193-198.
[15] 王術. Sobolev空间与偏微分方程引论[M]. 北京:科学出版社,2009:88-89.
[16] LIU H M, BIAN D F, PU X K. Global well-posedness of the 3D Boussinesq-MHD system without heat diffusion[J]. Zeitschrift für Angewandte Mathematik und Physik,2019,70(3):70-81.
Existence of Solutions for the 3D Boussinesq-MHD
Equations with Navier-slip Boundary ConditionsZHANG Shiyu1,2,LI Limei1,2,ZHU Zhiyi1,2(1. School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, Sichuan;
2. V. C. & V. R. Key Lab. of Sichuan Province, Sichuan Normal University, Chengdu 610066, Sichuan)
Abstract:We investigate the existence of solutions for the 3D incompressible Boussinesq-MHD equations with the Navier-slip boundary conditions in a smooth bounded domain. Firstly, the global existence of weak solution is obtained by Galerkin approximation. Secondly, the uniform prior estimates of the approximate solution is obtained by using the energy estimation method in the sense of H1 norm. Then combining with the standard limit process, Gronwall inequality and initial conditions, the local existence and uniqueness of the strong solution of the system are proved.
Keywords:Boussinesq-MHD equations; Navier-slip boundary condition; Galerkin approximation; weak solution; strong solution
2020 MSC:35Q35; 76D03