APP下载

田间作业条件下摘锭耐磨性能及棉花采净率的试验研究

2023-06-12李海洋王玉刚傅秀清张宏文杜欣田魏喜梅扶学文韩秉东

农业工程学报 2023年7期
关键词:棉机净率镀层

李海洋,王玉刚,傅秀清,张宏文,王 磊,王 蒙,杜欣田,魏喜梅,扶学文,韩秉东

田间作业条件下摘锭耐磨性能及棉花采净率的试验研究

李海洋1,2,王玉刚3,傅秀清4,张宏文1,2※,王 磊1,2,王 蒙1,2,杜欣田1,2,魏喜梅1,2,扶学文1,2,韩秉东1,2

(1. 石河子大学机械电气工程学院,石河子 832003; 2. 农业农村部西北农业装备重点实验室,石河子 832003;3.山东天鹅棉业机械股份有限公司,济南 250032; 4.南京农业大学工学院,南京 210031)

为了探究田间作业条件下摘锭的耐磨性能与棉花采净率,该研究将未钝化摘锭和钝化摘锭安装到采棉机不同采摘头上,在作业面积达到0、150、300、450、600 hm2时,获取2种摘锭样本并进行切割制样,分析钩齿磨损形貌,提取钩齿磨损面积及镀层厚度,同时测定2种摘锭的采净率。结果表明:未钝化摘锭的钩齿前齿尖易折断,钝化摘锭的钩齿镀层剥落晚于未钝化摘锭。在相同作业面积下,钝化摘锭的钩齿磨损面积更小,在测试位置的镀层厚度更高;当作业面积达到600 hm2时,未钝化摘锭的钩齿平均磨损面积达到2.9×105μm2,约为钝化摘锭的2.6倍;未钝化摘锭1号、2号钩齿及钝化摘锭1号钩齿测试位置镀层剥落,钝化摘锭具有更加优异的耐磨性能。对照2种全新摘锭的采净率,钝化摘锭的采净率比未钝化摘锭低0.2个百分点;当作业面积达到约200 hm2时,2种摘锭的采净率相差不大;当作业面积超过200 hm2时,钝化摘锭的采净率大于未钝化摘锭;当作业面积为450 hm2时,未钝化摘锭和钝化摘锭采净率均达到最大值,分别约为96.4 %和96.7 %;当作业面积为600 hm2时,钝化摘锭的采净比未钝化摘锭高0.5个百分点,钝化摘锭具有更加优异的采摘性能。该研究成果对于采棉机摘锭钩齿的结构优化与修形具有重要意义。

农业机械;棉花;摘锭;钝化;耐磨性能;磨损形貌;采净率

0 引 言

棉花原产于亚热带地区,品种繁多[1-3],是重要的经济作物[4-6],在国防、医药和工业中发挥着重要作用[7-8]。中国新疆适宜的环境和气候为棉花的生长、吐絮提供了条件[9-10],已经成为国内棉花的主要生产区域[11]。棉花机械化采收是促进棉花种植规模迅猛发展的主要原因之一,更是各项先进技术在棉花生产中应用的体现[12-14]。由于棉花的机械化采收效率高、成本低[15],采棉机在中国新疆等主要棉花种植地区得到广泛的运用[16]。

摘锭是采棉机的关键核心部件[17-20];钩齿是摘锭钩挂棉花的关键结构,易磨损[21-23]。摘锭对棉花的钩挂能力依赖于钩齿的完整性,钩齿磨损将直接影响机采棉的采收质量和采净率[24-27]。WANG等通过台架试验分析了不同钩齿角度参数对摘锭采摘性能的影响[28]。随着研究人员对摘锭磨损失效过程的研究,发现其磨损失效是多种磨损形式协同作用的结果[29-33]。GU等在田间作业条件下,获取摘锭样本并对其表面形貌进行了表征,结果表明,摘锭钩齿镀层的磨损主要是由磨粒磨损和疲劳剥落造成的,基体的磨损是磨粒磨损和氧化磨损共同作用的结果[34-35]。LI等对摘锭的12个钩齿进行了切割制样并利用扫描电子显微镜表征了其表面形貌,结果表明钩齿的磨损从前齿尖、后齿尖开始出现,并向齿刃与齿背面延伸,再向脱棉刃延伸,形成长筒靴状的磨损区域[16]。为提高摘锭的耐磨性能,GLENN等对其进行薄陶瓷涂层处理,以提高其光滑度和硬度[36]。张有强等提出对摘锭表面进行电磁处理,降低其残余应力,以提高其抗磨损能力[22]。AMANOV等利用超声波诱导摘锭表面出现严重的塑形变形,以改善材料表面完整性、增加其机械性能,提高其耐磨性[37]。张宏文等设计了一种具有仿形结构钩齿的采棉机摘锭,通过设置仿形结构预磨面实现摘锭钩齿齿刃与棉秆的线接触向面接触转变,能够提升钩齿齿刃部位镀层寿命,从而有效提高摘锭的耐磨性能[38]。上述几种方案虽然能提升摘锭的耐磨性能,但忽略了加工的难易程度与加工成本。前期调研过程中发现摘锭在作业过程中其钩齿齿尖和齿刃部位易先出现磨损,导致其耐磨性能较差。为了解决这种问题,研究人员在摘锭电镀之前利用电解的方法对摘锭钩齿的齿尖和齿刃部位进行钝化,以提升摘锭的耐磨性能[39]。

为了探究钝化摘锭的耐磨性能和采摘性能,本研究设计加工了未钝化摘锭和钝化摘锭,并将2种摘锭分别安装在采棉机的不同采摘头上。在采棉机达到不同作业面积时,从采摘头前滚筒座管上获取摘锭样本,并对其进行切割制样,分析2种摘锭钩齿的磨损形貌,提取钩齿磨损面积,测量钩齿镀层厚度,并测定2种摘锭的采净率,对比分析钝化摘锭的耐磨性能和采摘性能。

1 材料与方法

1.1 试验摘锭

摘锭主要由传动部分、支撑部分和采摘部分组成,其中采摘部分设置有3列钩齿,每列钩齿的数量为12个。本研究试验采用2种摘锭,一种为钩齿未经过钝化处理(表述为未钝化摘锭,钩齿截面齿刃处的曲率半径约为0.025~0.036 mm),另一种为钩齿经过钝化处理(本文表述为钝化摘锭,钩齿截面齿刃处的曲率半径约为0.045~0.060 mm),2种摘锭均与合作企业共同开发研制,基体材料均为20CrMnTi,基体表面均进行渗碳处理,镀层材料均为Cr。摘锭总体结构与钩齿截面显微形貌如图1所示。

1.2 试验设备

试验所用设备包括:John Deere采棉机(型号:CP690,配备Pro-16采摘头),数控电火花线切割机床(型号:DK-7732,电极丝直径:0.18 mm,加工精度:0.01 mm,用于切割摘锭钩齿),超声波清洗器(型号:DL-720D,用于清洗摘锭表面污渍),激光共聚焦显微镜(型号:LEXT-4100,高度分辨率:10 nm,用于观察摘锭截面形貌并测量钩齿镀层厚度),金相试样镶嵌机(型号:XQ-1,试样规格:30 mm,用于钩齿截面样本的镶嵌),金相磨抛机(型号:ZMP-2000,用于钩齿截面样本的研磨抛光),扫描电子显微镜(型号:S-4800,加速电压:0.5~30 kV,放大倍数:30~800 000倍,用于钩齿磨损形貌的表征),电子称(型号:SB-3003,精度:0.001 g,用于采净率测试过程中籽棉样本的称量)。

1.3 试验方法

试验于2021年10月8日至11月3日在新疆奎屯市进行。以摘锭种类和摘锭作业面积为试验因素,以钩齿磨损形貌、磨损面积、镀层厚度及采净率为评价指标,探究摘锭的耐磨性能与采摘性能。试验前将2种摘锭分别安装在采棉机1号采摘头和6号采摘头上(如图2所示)。新疆地区一台CP690采棉机在一个采收季节的作业面积为600~700 hm2,摘锭在田间作业150 hm2左右时,会出现齿尖镀层的脱落,出现初期的磨损;随着作业面积的增加,磨损程度逐渐增大[16]。因此,本研究在采棉机作业面积达到0、150、300、450、600 hm2时分别进行采净率的测定,并获取2种摘锭样本。

图2 CP690采棉机田间采棉试验

1.3.1 钩齿的制样与检测

每次分别获取2种摘锭各3根,利用数控电火花线切割机床对摘锭样本进行第一次切割,摘锭样本按照如图3a所示方式夹持,以保证切割路径与摘锭锥面的母线平行,得到钩齿表面样本,并利用超声波清洗仪清洗其表面污渍,为了便于区分,本文对每列钩齿进行编号,如图3b所示。对切割后的剩余部分(包含2列钩齿)进行第二次切割,摘锭样本按照如图3c所示方式夹持,以保证切割路径与摘锭钩齿倾斜角度一致,得到1~12号钩齿的切割样本,如图3d所示。利用金相试样镶嵌机对切割样本进行镶嵌,利用金相磨抛机对镶嵌样本进行研磨抛光(所用水砂纸的材质为SiC,型号为800#、1200#和2000#),得到钩齿截面样本,如图3e所示。重复上述操作步骤,完成全部摘锭样本的切割制样。由于2种摘锭不同作业面积下的样本数均为3根,因此2种摘锭在不同作业面积下均有3组钩齿表面样本与钩齿截面样本。采用扫描电子显微镜观察摘锭钩齿表面显微形貌,加速电压15 kV,放大倍数为50倍。利用CAD软件提取1~12号钩齿磨损面积,取3组数据的平均值作为结果。利用激光共聚焦显微镜观察摘锭钩齿截面形貌并提取钩齿镀层厚度,取3组样本的平均值作为结果。

图3 钩齿切割及制样过程示例

1.3.2 采净率测定

采净率是衡量摘锭采摘性能的重要指标,摘锭钩齿的磨损将影响机采棉的采净率[40-42]。耐磨性能优异的摘锭能够更长时间地保持钩齿结构的完整性,保证机采籽棉的采净率。参照《GB/T 21397 棉花收获机》对2种摘锭的采净率进行测定。新疆地区棉花多采用如图4所示的种植模式[43-44],且地势平坦,棉田面积大,满足上述标准中采净率测定的地表条件。

试验前先对籽棉产量进行测定,产量测区如图4中测区1所示。将测区内的籽棉进行人工采收,并对其进行称量,计算出单位面积籽棉产量(g/m2)。2种摘锭的采净率测区分别与采棉机1号采摘头和6号采摘头的田间作业轨迹重合,如图4中测区2、3所示。采收前,清理每个测区内的自然落地棉(采摘前自然落到地表的籽棉,如图5a所示)。采棉机按稳定的作业速度进入测区内进行采摘作业。采收后,收集每个测区内的遗留棉(采收后仍遗留在棉株铃壳内未被采收的籽棉,如图5b所示)、挂枝棉(采收后挂在棉株上的籽棉,如图5c所示)和撞落棉(采收时由于采棉机碰撞而落地的籽棉,如图5d所示)作为测定样本。清理籽棉样本中的杂质并称量,计算出单位面积遗留棉质量1(g/m2)、单位面积挂枝棉质量2(g/m2)、单位面积撞落棉质量3(g/m2)。在试验田的四周和中心位置选取5个区域,重复上述操作。

1. 棉花产量测区2. 未钝化摘锭采净率测区3. 钝化摘锭采净率测区。

图5 籽棉分类

采净率是采棉机成功采收的棉花质量与棉田棉花产量的比值。利用式(1)对每次试验5个测区内2种摘锭的采净率进行计算,结果取平均值。

式中为采净率,%。

2 结果与分析

2.1 1号钩齿磨损形貌

钩齿磨损形貌是采棉机摘锭耐磨性能最直接的体现,为了评估2种摘锭的耐磨性能,本研究对不同作业面积下摘锭1~12号钩齿的磨损形貌进行了SEM(扫描电子显微镜)分析。其中,1号钩齿的磨损显微形貌如图6所示。

a. 未钝化摘锭 a. Unpassivated spindleb. 钝化摘锭 b. Passivated spindle

由图6可知,新的未钝化摘锭钩齿前齿尖较为尖锐,新的钝化摘锭钩齿前齿尖和后齿尖存在明显的钝化。当作业面积达到150 hm2时,未钝化摘锭的钩齿前齿尖折断,后齿尖镀层脱落;钝化摘锭的钩齿后齿尖进一步钝化。当作业面积达到300 hm2时,未钝化摘锭的钩齿后齿尖的磨损区域扩大,前齿尖同样出现折断现象;钝化摘锭的钩齿后齿尖镀层有轻微脱落。随着作业面积进一步增大,2种摘锭的钩齿齿刃和齿背均出现了不同程度的磨损。当作业面积达到600 hm2时,未钝化摘锭的钩齿镀层大面积脱落,钝化摘锭的钩齿磨损较为轻微。分析认为,采棉作业过程中钩齿与棉秆、棉花、铃壳及杂草、沙土、碎石等产生摩擦,钩齿的磨损最先发生于前、后齿尖与齿刃处,随着作业面积的增大,钩齿镀层厚度逐渐减小,并且伴随镀层的疲劳剥落[45-47],基体暴露在空气中发生氧化磨损,进一步加剧了摘锭的磨损失效[16,34-35]。而钝化摘锭的钩齿后齿尖进一步钝化,是因为钩齿后齿尖镀层在作业过程中出现磨损,镀层厚度减小[35]。未钝化摘锭的钩齿前齿尖易折断现象是因为前齿尖尖锐,应力集中,而钩齿的钝化处理能有效降低前齿尖的应力集中[39]。

2.2 钩齿磨损面积

为了更直观地反应摘锭1~12号钩齿的磨损失效规律,利用CAD软件提取不同作业面积下1~12号钩齿的磨损面积来评估钩齿的磨损程度。不同作业面积下未钝化摘锭和钝化摘锭的钩齿磨损面积如图7所示。随着作业面积增加,2种摘锭的钩齿磨损面积逐渐增大,并且增大速率增加;未钝化摘锭的钩齿磨损面积增大速率大于钝化摘锭,当作业面积达到600 hm2时,未钝化摘锭1号钩齿的磨损面积达到8.8×105μm2,约为钝化摘锭1号钩齿磨损面积的2.3倍。在相同的作业面积下,2种摘锭的钩齿磨损面积均随钩齿编号的增大呈下降趋势,这是因为摘锭对棉花的钩挂、缠绕主要是通过编号靠前的几个钩齿完成的[48-50]。

为了更直观地对比2种摘锭的耐磨性能,对1~12号钩齿的磨损面积取平均值,结果如图7c所示。随着作业面积的增加,2种摘锭的钩齿平均磨损面积均呈上升趋势,且上升速率不断增大,这与之前的研究结果一致[16,34-35],并且未钝化摘锭钩齿平均磨损面积上升的速率更高,在相同作业面积下,钝化摘锭的钩齿平均磨损面积更小;当作业面积达到600 hm2时,未钝化摘锭的钩齿平均磨损面积达到2.9×105μm2,约为钝化摘锭的2.6倍。

2.3 钩齿镀层厚度

为了探究钩齿镀层厚度的变化规律,本研究利用激光共聚焦显微镜提取不同作业面积下2种摘锭1~12号钩齿的镀层厚度。

通过对摘锭不同部位镀层厚度的提取发现,2种全新摘锭各部位镀层厚度存在差异。以1号钩齿为例,未钝化摘锭1号钩齿前齿尖处镀层厚度最大,约为150~200 μm,齿刃和后齿尖处镀层厚度约为140~160 μm;钝化摘锭1号钩齿前齿尖、齿刃和后齿尖处的镀层厚度比未钝化摘锭小5~20 μm。2种摘锭1号钩齿齿背在靠近齿刃位置处镀层厚度较大,远离齿刃部位镀层厚度呈递减趋势,其变化范围约为40~160 μm,2~12号钩齿各部位的镀层厚度依次降低,激光共聚焦显微镜下钩齿齿背处的截面显微形貌如图8所示。分析认为,摘锭电镀过程中钩齿前齿尖、齿刃等部位较为尖锐,电荷相对集中,导致钩齿前齿尖、齿刃等部位镀层较厚,其余部位镀层较薄;而摘锭采摘部分前端小后端大,钩齿编号越小,在电镀过程中电荷分布越密集,导致1号钩齿镀层较厚,2~12号钩齿各部位镀层厚度依次降低[16]。随着作业面积增加,2种摘锭的钩齿各部位镀层厚度均逐渐降低。

图7 摘锭钩齿磨损面积对比

图8 钩齿截面显微形貌

根据2.1节分析可知,前齿尖、后齿尖和齿刃部位镀层易脱落,因此,本文对图3e标记处镀层厚度进行测量。图9a、9b为不同作业面积下未钝化摘锭和钝化摘锭的钩齿镀层厚度。由图9a、9b可知,对于全新摘锭,钩齿镀层厚度随着钩齿编号的增大而降低。随着作业面积的增大,2种摘锭1~12号钩齿的镀层厚度均逐渐降低,且降低的速率随着钩齿编号的增大而减小,当作业面积达到450、600 hm2时,2种摘锭的钩齿镀层厚度均随钩齿编号的增大而上升,这是因为摘锭采摘棉花过程主要是通过前几个钩齿完成对棉纤维的钩挂,编号越小的钩齿镀层磨损越严重[48-50]。在相同的作业面积下,钝化摘锭的镀层厚度略大于未钝化摘锭。当作业面积达到450 hm2时,未钝化摘锭1号钩齿测试位置镀层剥落;当作业面积达到600 hm2时,未钝化摘锭1号、2号钩齿测试位置镀层剥落,钝化摘锭1号钩齿测试位置镀层剥落。

图9 摘锭钩齿镀层厚度对比

为了更直观地对比2种摘锭的耐磨性能,对1~12号钩齿的镀层厚度取平均值,结果如图9c所示。未钝化摘锭在测试位置的平均镀层厚度比钝化摘锭低5~15 μm,这是因为其钩齿前齿尖和后齿尖部位较为尖锐,在电镀过程中电荷较为集中,而测试位置的电荷分布相对较为稀疏,导致齿尖位置镀层厚度较高而测试位置镀层厚度较低[16];而钝化摘锭由于钩齿的尖锐部位经过钝化处理,电镀过程中电荷分布较为均匀,测试位置镀层厚度略微增大。随着摘锭作业面积的增加,2种摘锭钩齿平均镀层厚度均呈下降趋势,并且在相同作业面积下,钝化摘锭的钩齿平均镀层厚度更大。从图9c中也可以看出,作业面积为0~300 hm2时,2种摘锭钩齿平均镀层厚度降低的速率几乎一致;作业面积为300~450 hm2时,未钝化摘锭钩齿平均镀层厚度降低的速率明显大于钝化摘锭;作业面积为450~600 hm2时,2种摘锭钩齿平均镀层厚度降低的速率相差不大。分析可知,造成该现象的原因为:作业面积为0~300 hm2时,2种摘锭在测试位置的镀层均未剥落,而2种摘锭镀层的材质均为Cr,所以2种摘锭钩齿镀层厚度降低的速率几乎一致;作业面积为300~450 hm2时,未钝化摘锭1号钩齿测量位置镀层剥落,会造成该区域的镀层厚度从约30~50 μm直接降低为0,所以镀层厚度降低速率较大;作业面积为450~600 hm2时,未钝化摘锭1号、2号钩齿以及钝化摘锭1号钩齿测试位置镀层均剥落,所以该阶段2种摘锭钩齿平均镀层厚度的降低速率相差不大。综上所述,钝化摘锭具有更加优异的耐磨性能。

2.4 采净率

采净率是体现采棉机采摘性能的重要指标。采棉机在新疆地区一个采收季节的作业时长约为30 d,随着作业面积的增加,棉花成熟程度不断提升。以第一次的测试日期(2021年10月8日)为基准对棉花成熟时长进行统计,结果如图10a所示。图10b是不同作业阶段2种摘锭棉花采净率的对比。由图10b可知,作业面积在0~450 hm2时,2种摘锭的采净率均呈上升趋势,这是因为随着作业面积的增加,棉花成熟度上升,棉花与铃壳之间的生物联结力降低[51],更容易被采摘;而当作业面积达到450 hm2后,2种摘锭的采净率呈略微下降趋势,这是因为此时2种摘锭钩齿的磨损面积较大,镀层厚度较小,钩齿的严重磨损导致其对棉花的采摘能力降低。对照2种摘锭的采净率发现,钝化摘锭的采净比未钝化摘锭低0.2个百分点,这是因为钩齿的钝化影响了其对棉花的采摘能力。随着采棉机作业面积的增加,钝化摘锭采净率的上升速率大于未钝化摘锭,当作业面积达到约为200 hm2时,2种摘锭的采净相差不大;当作业面积超过200 hm2时,钝化摘锭的采净率大于未钝化摘锭,且2种摘锭的采净率继续呈上升趋势;当作业面积为450 hm2时,未钝化摘锭和钝化摘锭的采净率均达到最大值,分别约为96.4%和96.7%;当作业面积为600 hm2时,钝化摘锭的采净比未钝化摘锭高0.5个百分点。这是因为钝化摘锭钩齿镀层磨损更加缓慢,到后期未钝化摘锭钩齿的磨损面积更大、镀层厚度更低,使得其对棉花的钩挂能力降低。

为了更直观地对比2种摘锭的采净率,将同一作业面积下2种摘锭采净率的差值记为相对采净率,其结果如图10c所示。图10c反应了随着作业面积的增加,相对于未钝化摘锭,钝化摘锭采净率呈不断上升的趋势。当采棉机作业面积小于200 hm2时,相对采净率小于0,这是因为此时钝化摘锭的采净率小于未钝化摘锭。随着作业面积的增加,相对采净率呈上升趋势,这是因为在相同的作业面积下钝化摘锭的磨损程度相对较低,随着棉花成熟时长的增加,采净率上升更加迅速。结合图10b和图10c可知,钝化摘锭具有更加优异的采摘性能。

图10 采净率对比

3 结 论

1)通过对2种摘锭的钩齿表面显微形貌观察发现,未钝化摘锭的钩齿前齿尖易折断,加快了钩齿磨损;钝化摘锭的钩齿前齿尖和后齿尖存在明显的钝化,其钩齿镀层的剥落晚于未钝化摘锭。

2)通过对2种摘锭的钩齿磨损面积提取发现,未钝化摘锭的钩齿磨损面积增大的速率大于钝化摘锭;在相同作业面积下,钝化摘锭的钩齿磨损面积小于未钝化摘锭,当作业面积达到600 hm2时,未钝化摘锭的钩齿平均磨损面积达到2.9×105μm2,约为钝化摘锭的2.6倍,钝化摘锭具有更加优异的耐磨性能。

3)通过对2种摘锭的钩齿镀层厚度提取发现,随着作业面积的增大,2种摘锭1~12号钩齿的镀层厚度均逐渐降低;在相同的作业面积下,钝化摘锭的镀层厚度略大于未钝化摘锭;当作业面积达到600 hm2时,未钝化摘锭1号、2号钩齿测试位置镀层剥落,钝化摘锭1号钩齿测试位置镀层剥落。

4)对照2种全新摘锭的采净率发现,钝化摘锭的采净比未钝化摘锭低0.2个百分点;当作业面积达到约200 hm2时,2种摘锭的采净相差不大;当作业面积超过200 hm2时,钝化摘锭的采净率大于未钝化摘锭;当作业面积为450 hm2时,未钝化摘锭和钝化摘锭的采净率均达到最大值,分别约为96.4%和96.7%;当作业面积为600 hm2时,钝化摘锭的采净比未钝化摘锭高0.5个百分点;钝化摘锭具有更加优异的采摘性能。

本研究对比分析了田间作业条件下摘锭的耐磨性能和棉花采净率,对于采棉机摘锭钩齿的结构优化与修形具有重要意义。

[1] 张龙唱,张宏文,王磊,等. 不同成熟度机采棉采摘力学特性试验[J]. 甘肃农业大学学报,2020,55(6):193-202. ZHANG Longchang, ZHANG Hongwen, WANG Lei, et al. Study on mechanical characteristics of machine-harvested cotton at different maturity degrees[J]. Journal of Gansu Agricultural University, 2020, 55(6): 193-202. (in Chinese with English abstract)

[2] 卢秀茹,贾肖月,牛佳慧. 中国棉花产业发展现状及展望[J]. 中国农业科学,2018,51(1):26-36. LU Xiuru, JIA Xiaoyue, NIU Jiahui. The present situation and prospects of cotton industry development in China[J]. Scientia Agricultura Sinica, 2018, 51(1): 26-36. (in Chinese with English abstract)

[3] 喻树迅. 中国棉花产业百年发展历程[J]. 农学学报,2018 8(1):85-91. YU Shuxun. The development of cotton production in the recent hundred years of China[J]. Journal of Agriculture, 2018, 8(1): 85-91. (in Chinese with English abstract)

[4] WANG J, Zhang H W, WANG L, et al. Experimental study and simulation of the stress relaxation characteristics of machine-harvested seed cotton[J]. Applied Sciences, 2021, 11(21): 9959.

[5] FUE K G, BARNES E M, PORTER W M, et al. Visual Control of Cotton-picking Rover and Manipulator using a ROS-independent Finite State Machine[C]//2019 ASABE Annual International Meeting, Boston, US: ASABE, 2019: 1900779.

[6] 牛国梁,李斌,刘洋,等. 我国采棉机发展历程与研究现状[J]. 中国农机化学报,2020,41(2):212-218. NIU Guoliang, LI Bin, LIU Yang, et al. Development and research status of cotton picker in China[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 212-218. (in Chinese with English abstract)

[7] HOSSEINALI F, THOMASSON J A. Variability of fiber friction among cotton varieties: Influence of salient fiber physical metrics[J]. Tribology International, 2018, 127: 433-445.

[8] CHEN H X, ZHAO X X, HAN Y C, et al. Competition for light interception in cotton populations of different densities[J]. Agronomy, 2021, 11(1): 176.

[9] 张定文. 新疆呼图壁县种植棉花的气候条件分析[J].北京农业,2015(31):133-134.

[10] ARSHAD A, RAZA M A, ZHANG Y, et al. Impact of climate warming on cotton growth and yields in China and Pakistan: A regional perspective[J]. Agriculture, 2021, 11(2): 97.

[11] 王磊,张宏文,刘巧. 胶棒滚筒棉花采摘头采收性能试验[J]. 农业工程学报,2016,32(18):35-41. WANG Lei, ZHANG Hongwen, LIU Qiao. Test on harvest performance of cotton picking head with rubber-bar roller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 35-41. (in Chinese with English abstract)

[12] 武建设,陈学庚. 新疆兵团棉花生产机械化发展现状问题及对策[J]. 农业工程学报,2015,31(18):5-10. WU Jianshe, CHEN Xuegeng. Present situation, problems and countermeasures of cotton production mechanization development in Xinjiang Production and Construction Corps[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 5-10. (in Chinese with English abstract)

[13] 陈廷官,张宏文,王磊,等. 水平摘锭式采棉机采摘头传动系统优化与试验[J]. 农业工程学报,2020,36(17):18-26. CHEN Tingguan, ZHANG Hongwen, WANG Lei, et al. Optimization and experiments of picking head transmission system of horizontal spindle type cotton picker[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 18-26. (in Chinese with English abstract)

[14] 陈廷官,张宏文,王磊,等. 水平摘锭式采棉机采摘机构运动特性研究与试验[J]. 中国农机化学报,2020,41(2):19-25. CHEN Tingguan, ZHANG Hongwen, WANG Lei, et al. Research and experiment on the movement characteristics of the picking mechanism of the horizontal spindle picking cotton picker[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 19-25. (in Chinese with English abstract)

[15] RIZAEV A, MATCHANOV R, YULDASHEV A T, et al. Cotton harvesters for one-time cotton-picking[C]//Materials Science and Engineering, Tashkent, Uzbekistan: IOP Publishing, 2021, 1030(1): 012173.

[16] LI H Y, FU X Q, WANG H B, et al. Research on the wear characteristics of the hook teeth of cotton pickers[J]. Coatings, 2022, 12(6): 762.

[17] 罗树丽,张有强,马少辉. 采棉机摘锭磨损机理分析[J]. 塔里木大学学报,2018,30(1):132-137. LUO Shuli, ZHANG Youqiang, MA Shaohui. Wear mechanism analysis on spindle of cotton picker[J]. Journal of Tarim University, 2018, 30(1): 132-137. (in Chinese with English abstract)

[18] 吴蓓,张立新,左玉婷,等. 采棉机水平摘锭材料元素分布研究:基于扫描电镜/能谱分析[J]. 农机化研究,2013,35(7):174-178. WU Bei, ZHANG Lixin, ZUO Yuting, et al. Research of material elements distribution in cotton picker’s level spindle based on SEM and EDS[J]. Journal of Agricultural Mechanization Research, 2013, 35(7): 174-178. (in Chinese with English abstract)

[19] 吴天松,胡蓉,鲁彦志. 采棉机摘锭磨损程度的数字图像法研究[J]. 机械研究与应用,2017,30(6):159-162. WU Tiansong, HU Rong, LU Yanzhi. Research on the digital image processing method for spindle wear degree of cotton picker[J]. Mechanical Research and Application, 2017, 30(6): 159-162. (in Chinese with English abstract)

[20] 李文春,乔园园,邓亚猛,等. 水平摘锭钩齿磨损的评价与分析[J]. 中国农机化学报,2018,39(3):11-14. LI Wenchun, QIAO Yuanyuan, DENG Yameng, et al. Evaluation and analysis of hook tooth wear for cotton picker spindle[J]. Joural of Chinese Agricultural Mechanization, 2018, 39(3): 11-14. (in Chinese with English abstract)

[21] 吴天松,胡蓉,鲁彦志. 采棉机摘锭磨损的自动检测及摘锭寿命预测[J]. 机械,2018,45(4):32-37. WU Tiansong, HU Rong, LU Yanzhi. Automatic inspection of cotton picking spindle and its life prediction[J]. Machinery, 2018, 45(4): 32-37. (in Chinese with English abstract)

[22] 张有强,蔡志鹏,田煜,等. 电磁处理提升采棉机摘锭力学性能和耐磨性[J]. 农业工程学报,2018,34(7):31-37. ZHANG Youqiang, CAI Zhipeng, TIAN Yu, et al. Improvement of mechanical properties and wear resistance of cotton picker spindle by electromagnetic treatment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 31-37. (in Chinese with English abstract)

[23] MENG F M, CHEN Y P, YANG Y, et al. Friction and wear behavior of electroless nick coating used for spindle of cotton picker[J]. Industrial Lubrication and Tribology, 2016, 68(2): 220-226.

[24] BAKER K D, DELHOM C D, HUGHS S E. Spindle diameter effects for cotton pickers[J]. Applied Engineering in Agriculture, 2017, 33(3): 321-327.

[25] BAKER K D, HUGHS E, FOULK J. Spindle speed optimization for cotton pickers[J]. Applied Engineering in Agriculture, 2015, 31(2): 217-225.

[26] BAKER K D, HUGHS E, FOULK J. Cotton quality as affected by changes in spindle speed[J]. Applied Engineering in Agriculture, 2010, 26(3): 363-369.

[27] MENG F M, CHEN N W, CHEN Z W. Hard chromium coating effects on tribological performances for nonlubricated and lubricated spindle of cotton picker[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 230(2): 446-453.

[28] WANG L, YIN C H, ZHANG L C, et al. Analysis and experiment on the impact of various hook angle factors on spindle picking performance[J]. Agriculture, 2022, 12(6): 768.

[29] 吴蓓. 采棉机水平摘锭材料及热处理工艺分析[D]. 石河子:石河子大学,2013. WU Bei. The Analysis of Cotton-Picker Level Spindle’s Material and Heat Treatment Process[D]. Shihezi: Shihezi University, 2013. (in Chinese with English abstract)

[30] 古丽扎代姆·阿木提. 自走式采棉机关键零部件的材料分析及优化[D]. 乌鲁木齐:新疆大学,2014. GURIZADEEM·Amuti. Since the Material Analysis and Optimization of Key Parts of Cotton Picker[D]. Urumchi: Xinjiang University, 2014. (in Chinese with English abstract)

[31] 邓亚猛,李文春,俞天柱,等. 水平摘锭式采棉机的摘锭磨损因素分析与研究[J]. 中国农机化学报,2017,38(9):11-13. DENG Yameng, LI Wenchun, YU Tianzhu, et al. Analysis and study on spindle component wear factors of horizontal cotton picker[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(9): 11-13. (in Chinese with English abstract)

[32] ZHANG Y Q, TIAN Y, MENG Y G. Wear behavior of spindles of cotton picker in field work[J]. Journal of Tribology, 2021, 143(2): 021703.

[33] 张有强,王伟,廖结安. 采棉机摘锭磨损失效分析[J]. 农业工程学报,2017,33(18):45-50. ZHANG Youqiang, WANG Wei, LIAO Jie’an. Wear failure analysis on spindle of cotton picker[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(18): 45-50. (in Chinese with English abstract)

[34] GU Y Q, ZHANG H W, FU X Q, et al. Experimental wear behavior analysis of coated spindle hook teeth under real harvesting work conditions[J]. Materials, 2021, 14(10): 2487.

[35] GU Y Q, ZHANG H W, FU X Q, et al. Comparative analysis of the wear performance of spindle hook teeth during fieldwork[J]. Journal of Tribology, 2022, 144(1): 011706.

[36] GLENN D. Cotton picker spindle: US4483132A[P]. 1984-11-20.

[37] AMANOV A, SEMBIRING J P B A, AMANOV T. Experimental investigation on friction and wear behavior of the vertical spindle and V-belt of a cotton picker[J]. Materials, 2019, 12(5): 773.

[38] 张宏文,谷艳清,王军,等. 一种具有仿形结构钩齿的采棉机用摘锭:CN112514651B[P]. 2021-10-08.

[39] 张宏文,李海洋,金永逊,等. 一种钩齿经过钝化处理的采棉机摘锭:CN113994812B[P]. 2022-10-25.

[40] 周文卿. 采棉机采净率的影响因素研究[D]. 阿拉尔:塔里木大学,2020. ZHOU Wenqing. Study on the Factors Affecting the Harvesting Rate of Cotton Pickers[D]. Alar: Tarim University, 2020. (in Chinese with English abstract)

[41] 罗树丽. 机采棉株型特征与采净率研究[D]. 阿拉尔:塔里木大学,2018. LUO Shuli. Research on Plant Type Characteristics and Recovery Rate of Cotton Picking[D]. Alar: Tarim University, 2018. (in Chinese with English abstract)

[42] 王由之,张宏文,王磊,等. 基于模糊PID控制的棉花采摘性能试验台测控系统研制[J]. 农业工程学报,2018,34(23):23-32. WANG Youzhi, ZHANG Hongwen, WANG Lei, et al. Development of measurement and control system for cotton picking performance test bench based on fuzzy PID control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 23-32. (in Chinese with English abstract)

[43] 张恒恒,王香茹,胡莉婷,等. 不同机采棉种植模式和种植密度对棉田土壤水热效应及产量的影响[J]. 农业工程学报,2020,36(23):39-47. ZHANG Hengheng, WANG Xiangru, HU Liting, et al. Effects of different machine-harvested cotton planting patterns and planting densities on soil hydrothermal conditions and cotton yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 39-47. (in Chinese with English abstract)

[44] 张昊,林涛,汤秋香,等. 种植模式对机采棉冠层光能利用与产量形成的影响[J]. 农业工程学报,2021,37(12):54-63. ZHANG Hao, LIN Tao, TANG Qiuxiang, et al. Effects of planting pattern on canopy light utilization and yield formation in machine-harvested cotton field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(12): 54-63. (in Chinese with English abstract)

[45] KORZYNSKI M, DZIERWA A, PACANA A, et al. Fatigue strength of chromium coated elements and possibility of its improvement with ball peening[J]. Surface and Coatings Technology, 2009, 204(5): 615-620.

[46] DZIERWA A, PAWLUS P, REIZER R. Surface topography of chromium coatings after pneumatic ball peening[C]//Key Engineering Materials, Switzerland: Trans Tech Publications Ltd, 2008: 113-116.

[47] KORZYNSKI M, PACANA A, CWANEK J. Fatigue strength of chromium coated elements and possibility of its improvement with slide diamond burnishing[J]. Surface and Coatings Technology, 2009, 203(12): 1670-1676.

[48] 毕新胜. 采棉机采摘头水平摘锭工作机理的研究[D]. 石河子:石河子大学,2007. BI Xinsheng. Study on Working Mechanism of Horizontal Spindle Picking of Cotton Picker[D]. Shihezi: Shihezi University, 2007. (in Chinese with English abstract)

[49] 刘秀梅. 水平摘锭式采棉机摘锭采摘机理的研究[D]. 石河子:石河子大学,2019. LIU Xiumei. Study on the Picking Mechanism of Spindle of Horizontal Cotton Picker[D]. Shihezi: Shihezi University, 2019. (in Chinese with English abstract)

[50] 刘秀梅,张宏文,王磊,等. 水平摘锭式采棉机摘锭采棉的缠绕模型研究[J]. 农机化研究,2020,42(8):13-19. LIU Xiumei, ZHANG Hongwen, WANG Lei,et al. Study on winding model of spindle picking cotton for horizontal cotton picker[J]. Journal of Agricultural Mechanization Research, 2020, 42(8): 13-19. (in Chinese with English abstract)

[51] 张龙唱,张宏文,王磊,等. 不同铃壳物理参数对机采棉采摘力学特性的影响[J]. 农业工程学报,2020,36(19):30-37. ZHANG Longchang, ZHANG Hongwen, WANG Lei, et al. Influence of different boll shell physical parameters on mechanical properties of machine-harvested cottons[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 30-37. (in Chinese with English abstract)

Experimental study on the wear resistance of spindle and cotton total harvest rate under field conditions

LI Haiyang1,2, WANG Yugang3, FU Xiuqing4, ZHANG Hongwen1,2※, WANG Lei1,2, WANG Meng1,2, DU Xintian1,2, WEI Ximei1,2, FU Xuewen1,2, HAN Bingdong1,2

(1.,,832003,;2.,832003;3.,250032,; 4.,,210031,)

Cotton is one of the most important economic crops and strategic materials in national defense, medicine, and industry. Mechanized harvesting of cotton has been an effective way to promote the development of the cotton industry in China. Among them, a large cotton harvesting equipment, a cotton picker has been widely used in Xinjiang in western China, due to the fast, convenient, and low labor intensity. The spindle is the commonly-used core component in the cotton picker. The product quality and wear resistance of the spindle can determine the operation efficiency, quality, and economy of the cotton picker. The wear failure of the spindle is mainly manifested in the serious wear to the hook teeth. The hook teeth are the key structure of the spindle hooking and winding the cotton. Moreover, the hook teeth are in contact with the cotton plant, the bell shell, the sand, and hard particles during the operation of the cotton picker, leading to damage and peeling from the hook tooth coating. The failure of spindle hook teeth can be caused to couple with the complex and changeable field operating environment. The rear tooth tip and the tooth edge of the hook tooth were concentrated in the process of cotton picking or removal, due to the stresses of the front tooth tip. The wear in the hook tooth can often start from these parts, leading to the low wear resistance of the hook tooth. The electrolytic method can be used to passivate the front tooth tip, the rear tooth tip, and the tooth edge of the spindle hook teeth before the electroplating of the spindle, in order to improve the wear resistance of the spindle hook teeth, particularly for the service life and the collection rate of the spindle during harvesting. This study aims to explore the wear resistance of the passivated spindle and the cotton collection rate under field conditions. The unpassivated spindle and the passivated spindle were installed on different picking heads of the cotton picker. Once the working area of the cotton picker reached 0, 150, 300, 450, and 600 hm2, two kinds of spindle samples were obtained and cut for sample preparation. The wear morphology of the hook teeth was analyzed to extract the wear area of the hook teeth and the thickness of the coating. The collection rate of the two kinds of spindles was measured after harvesting. The results show that the front tooth tip of the unpassivated spindle hook tooth was easy to break, whereas, the peeling of the passivation spindle hook tooth coating was later than that of the unpassivated spindle. There was a smaller wear area of the passivated spindle hook teeth, and the coating thickness was higher at the test position under the working areas. When the working area reached 600 hm2, the wear area of the unpassivated spindle No.1 hook tooth reached 8.8×105μm2, which was about 2.3 times of the passivated spindle No.1 hook tooth. There was the peeled-off coating of unpassivated hook teeth No.1 and No.2, as well as the passivated hook teeth No.1 at the test position. The passivated spindle performed better wear resistance, in terms of the wear morphology, wear area, and coating thickness. Furthermore, the collection rate of the passivated spindle was 0.2 percentage points lower than that of the unpassivated one. When the working area reached about 200 hm2, there was little difference between the collection rate two kinds of spindles. Once the working area exceeded 200 hm2, the collection rate of the passivated spindle was greater than that of the unpassivated spindle. When the working area reached 450 hm2, the collection rate of unpassivated and passivated spindles reached the maximum, which was about 96.4 % and 96.7 %, respectively. When the working area reached 600 hm2, the average wear area of the unpassivated spindle hook tooth reaches 2.9×105μm2, which was about 2.6 times of the passivated spindle hook tooth, and the collection rate of the passivated spindle was 0.5 percentage points higher than that of the unpassivated spindle, indicating the better picking performance of passivated spindle. The finding can provide great significance for the structural optimization and modification of the hook teeth of the cotton picker.

agricultural machinery; cotton; spindle; passivation; wear resistance; wear morphology; harvest rate

2022-10-20

2023-03-13

石河子大学创新发展专项项目(CXFZ202015);兵团重大科技项目(2018AA008);中央高校基本科研业务费专项基金(KYLH2022002)

李海洋,研究方向为机械工程。Email:20202109054@stu.shzu.edu.cn

张宏文,博士,教授,博士生导师,研究方向为农业机械设计及机械系统仿真。Email:zhw_mac@shzu.edu.cn

10.11975/j.issn.1002-6819.202210173

S233.4

A

1002-6819(2023)-07-0089-09

李海洋,王玉刚,傅秀清,等. 田间作业条件下摘锭耐磨性能及棉花采净率的试验研究[J]. 农业工程学报,2023,39(7):89-97. doi:10.11975/j.issn.1002-6819.202210173 http://www.tcsae.org

LI Haiyang, WANG Yugang, FU Xiuqing, et al. Experimental study on the wear resistance of spindle and cotton total harvest rate under field conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(7): 89-97. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.202210173 http://www.tcsae.org

猜你喜欢

棉机净率镀层
采棉机采净率的影响因素及处理措施分析*
国产采棉机替代进口成趋势
镍磷基镀层耐磨性的影响因素
Ni-P-SiC复合镀层性能的研究
采棉机介绍
雌蛾冷藏和雄蛾二交两种方法对两广二号原种繁育的影响
超薄金刚石带锯镀层均匀性研究
旱地全膜双垄沟残膜回收机关键作业参数试验分析
不同种植密度对机采棉采净率及产量的影响
采棉机清洗液的研制及乳液的性能评定