APP下载

辣椒碱对动物肠道功能和肠道菌群的影响及其缓解肠道炎症的研究进展

2023-06-08从光雷夏双双刘春雪洪平

江苏农业学报 2023年1期
关键词:肠道菌群

从光雷 夏双双 刘春雪 洪平

摘要: 辣椒碱(CAP)是一种从辣椒中分离出来的生物碱,作为香料被广泛使用。已有研究结果表明,辣椒碱具有多效性,如抗炎、抗氧化和抗癌症等作用,但其影响动物肠道功能和肠道菌群组成方面的研究相对较少。本文综述了辣椒碱对动物肠道功能和肠道菌群的调节作用,并阐述其在缓解动物肠炎发生和发展方面的作用机制,为辣椒碱在维持肠道稳态方面的应用提供理论基础。

关键词: 辣椒碱;肠道功能;肠道菌群;肠道稳态;肠道炎症

中图分类号: S816 文献标识码: A 文章编号: 1000-4440(2023)01-0287-08

Research progress of the effect of capsaicin on animal intestinal function and intestinal microflora and its relieving effect on intestinal inflammation

CONG Guang-lei, XIA Shuang-shuang, LIU Chun-xue, HONG Ping

(Anyou Biotechnology Group Co., Ltd., Suzhou 215437, China)

Abstract: Capsaicin is an alkaloid isolated from peppers and is widely used as spice. Previous studies have shown that capsaicin has pleiotropic effects, such as anti-inflammatory, antioxidant and anticancer effects, but less attention has been paid to its effects on animal intestinal function and intestinal microflora  composition. In this paper, the regulatory effect of capsaicin on animal intestinal function and intestinal microflora was reviewed, and its action mechanism in relieving the occurrence and development of animal intestinal inflammation was described, so as to provide a theoretical basis for the application of capsaicin in maintaining intestinal homeostasis.

Key words: capsaicin;intestinal function;intestinal microflora;intestinal homeostasis;intestinal inflammation

辣椒碱(CAP)是一种从辣椒中分离出来的生物碱,其化学名称为8-甲基-N-香草基-6-壬烯酰胺。近年来已有较多研究结果证明CAP具有多方面的益处,如抗炎、抗氧化和抗菌等功效[1-4],但关于其对肠道功能和肠道菌群方面影响的研究相对较少。已有研究结果表明,CAP对肠道功能和菌群具有有益的作用,可抑制肠道致病菌,促进有益菌的生长[5-7]。因此,本研究将CAP与肠道功能和肠道菌群的组成、丰度联系起来进行探讨,旨在对这些效应进行系统化的综述并揭示CAP发挥作用的潜在机制。

1 CAP对胃肠道系统的有益作用

1.1 CAP调节肠道形态结构的作用

Filik等[8]的研究结果表明,随着饲料的中辣椒渣(HPWP,CAP是其主要成分)的添加量增加,鹌鹑的肠绒毛高度、黏膜下层、浆膜、肌层、绒毛高度/隐窝深度和绒毛表面积也随之显著增加,肠道的杯状细胞数量也增加,提高了鹌鹑的生产性能。Liu等[9]将大肠杆菌F18攻毒的断奶仔猪模型与对照组相比发现,添加CAP 能够提高仔猪肠道黏膜和黏蛋白2的mRNA表达量。Namted等[10]研究发现,在猪饲料中添加CAP能够增加十二指肠的绒毛高度,并发现其与DL-蛋氨酸羟基类似物联合使用对肠道形态的正向影响更大。而在大鼠饲料中添加0.01% CAP,饲喂8周后发现其能够促进肠道刷状边界膜(BBM)的膜流动性,提高肠道膜结合酶的活性,改变肠道黏膜形态结构[11]。空肠和回肠区域的胆固醇含量和磷脂比降低也佐证了CAP能够增加BBM的膜流动性。CAP能激活空肠黏膜甘氨酸-甘氨酸二肽酶、亮氨酸氨基肽酶和γ-谷氨酰转肽酶的活性,表明CAP与蛋白质周围的脂质与疏水部分结合和互作,从而调节膜动力,这可能会降低膜脂对酶蛋白的空间约束作用,从而改变酶的构象。电子显微镜扫描发现,CAP处理组肠道绒毛的超微结构改变,肠绒毛长度和周长增加,这意味着CAP能够增加小肠绒毛表面积,从而提高微量营养素的生物利用率。因此,饲粮中添加CAP可诱导BBM的流动性和被动通透性改变,增加肠绒毛高度和小肠的吸收面积,从而促进动物机体的生产性能提高。

1.2 CAP促进胃肠道的消化作用

CAP对胃肠道的消化促进作用,主要通过2种方式实现:一是通过刺激肝脏产生和分泌富含胆汁酸的胆汁[12];二是激活胰腺和肠道的消化酶活性[13]。刺激胆汁分泌和激活消化酶活性,會促使整个消化过程加速,从而缩短食物通过胃肠道的时间[12]。饲料中持续添加和口服CAP均能够激活胰腺消化酶和小肠黏膜末端消化酶活性,显著提高胰腺的胰淀粉酶、胰蛋白酶、胰凝乳酶、肠道脂肪酶和肠道淀粉酶的活性,但不能激活胰脂肪酶的活性[13]

已知CAP能够刺激胆汁分泌,且胆汁中胆汁酸含量较高,而胆汁酸在脂肪的消化和吸收过程中具有重要作用[14]。因此,为探究CAP能否在高脂肪摄入期间促进脂肪的消化和吸收,有研究以高脂摄入大鼠(HFD)为试验对象,在大鼠饲料中添加0.015%的CAP,发现CAP可提高HFD的胰脂肪酶、淀粉酶、胰蛋白酶和糜蛋白酶活性,增加胆汁分泌量和胆汁酸含量,从而促进脂肪吸收。同时还可防止HFD的肝脏和血清中甘油三酯积累,降低肝脏中主要脂肪生成酶活性,升高激素敏感脂肪酶活性[15]。上述结果表明,CAP能够通过促进胆汁酸的分泌和激活胰脂肪酶活性,从而促进脂肪的消化吸收。

1.3 CAP促进营养素的吸收作用

CAP能够改变肠道黏膜形态结构和渗透性,而肠道形态结构和渗透性改变会影响微量元素的吸收。为了验证这一点,连续8周给大鼠饲喂含CAP的饲料,在试验结束时检测大鼠十二指肠、空肠和回肠食糜中的铁、锌和钙含量[16]。结果表明,CAP能够明显提高动物机体对铁、锌和钙的吸收,其中对钙吸收的影响最大。表明CAP可能是通过增加肠道吸收表面积和改变渗透性,从而促使肠道吸收微量元素。

研究发现,CAP能够改变肠道黏膜形态和通透性,促进肠道对β-胡萝卜素的吸收[17]。Veda等[18]给大鼠口服CAP后,检测到大鼠肝脏中β-胡萝卜素含量显著增加,但维生素A的含量并未发生变化,表明CAP能够促进β-胡萝卜素的吸收,但不能促进β-胡萝卜素在体内转化。β-胡萝卜素转化为维生素A的过程需要β-胡萝卜素-15,15-双加氧酶和视网膜还原酶参与,而添加CAP会降低肠道和肝脏中的β-胡萝卜素-15,15-双加氧酶活性,但不影响视网膜还原酶的活性,这与体外研究结果一致。

近年来研究还发现,CAP与野樱梅花青素联合使用,能够促进野樱梅花青素在小肠中的吸收[19]。综上所述,CAP与其他物质具有协同或螯合的特性,从而促进营养素的吸收。

2 CAP对肠道菌群的作用

2.1 CAP对有益菌的调节作用

CAP能够影响肠道菌群组成、丰度和功能。机体在吸收CAP前,其在肠腔内浓度能达到500~1 000 μmol/L,表明CAP与肠道菌群存在互作[20]。在后续的研究中也验证了这一点,并发现CAP对厚壁菌门和拟杆菌门的影响最大[21]

普拉梭菌(Faecalibacterium prausnitzii,厚壁菌门)是一种厌氧细菌,是肠道微生物群中最重要的共生菌[22-23],其含量与肠炎、糖尿病、哮喘、重度抑郁症和结肠直肠癌的发生呈负相关,是机体肠道健康的指标之一[24-28]。小鼠灌胃CAP[8 mg/(kg·d)]1周后,随灌胃时间延长,雄性小鼠肠道中普拉梭菌含量逐渐增加,而在雌性小鼠中未检出[2]。此外,短期高剂量CAP(10 mg/d,共处理2周)处理能增加健康人体的细菌丰度[29]。Long等[30]研究发现,在猪饲料中添加CAP能够增加结肠中普拉梭菌的丰度和肠道中挥发性脂肪酸的含量,提高仔猪生产性能。提示CAP是普拉梭菌存在于腸道菌群中的决定性因素,CAP通过调控普拉梭菌相对丰度来促进动物的生产性能提高。

罗斯氏菌(Roseburia,厚壁菌门)是革兰氏阳性厌氧细菌,其在肠道中增殖能改善小鼠的葡萄糖耐受不良和体质量减轻的问题[31]。小鼠灌服CAP[8 mg/(kg·d)] 1周,发现雄性小鼠肠道的罗斯氏菌含量增加,但在雌性小鼠上并未出现相同的情况,表明CAP对肠道菌群的作用存在性别差异[5]。连续灌服6周0.01%和0.02%的CAP,能够促使自发性肥胖型糖尿病模型小鼠肠道中的罗斯氏菌含量增加[21]。在奶牛饲料中添加CAP能够显著提高厚壁菌门中瘤胃球菌科UCG014属和RC9肠道菌属的菌群相对丰度,从而提高奶牛泌乳前期的产奶潜力[32]

乳酸菌是一种典型的厚壁菌门益生菌,对免疫细胞的稳态和肠道宿主的健康至关重要[33]。嗜酸乳杆菌能够增加有益菌的数量,从而抑制肠道中的致病菌[34]。Namted等[10]研究发现,CAP与DL-蛋氨酸羟基类似物联合使用具有提高猪盲肠乳酸菌相对丰度的趋势,可显著提高肠道乳酸浓度。与单喂高脂饲料小鼠相比,高脂饲料和CAP(每2 d 2 mg/kg,连续12周)共同饲喂的小鼠肠道中乳酸杆菌相对丰度增加[35],还发现CAP能够提高嗜酸乳杆菌的L-乳酸产量[36]。以瘦素受体缺乏型糖尿病小鼠为模型,持续灌胃0.01%的CAP 8周能够缓解胰岛素抵抗和改善葡萄糖稳态,这一效应与CAP诱导的乳酸菌属丰度增加有关[37]

此外,Song等[21]的研究结果表明,CAP在门水平上提高了厚壁菌门与拟杆菌门比例,在属水平上降低了肠道中的拟杆菌门和副拟杆菌属相对丰度。连续添加2周低浓度的CAP(5 mg/d)和2周高浓度的CAP(10 mg/d),发现也能使肠道菌群平衡比例提高[29]。相关研究结果还表明,根据拟杆菌属、普雷沃氏菌属和瘤胃球菌属丰度,肠道分为3种肠型,而CAP的作用取决于宿主肠道的肠道类型,肠型1(拟杆菌属)的宿主比肠型2(普雷沃氏菌属)的宿主食用CAP能获得更多的益处。研究者认为需要根据肠道菌群分型情况来使用CAP[29]

拟杆菌门能够将肠道中大分子分解成小分子,有利于机体吸收营养素[38]。灌胃CAP[8 mg/(kg·d )] 1周后,雄性小鼠肠道中的拟杆菌属丰富度降低,但在雌性小鼠中并未有相似的情况,提示CAP的作用具有性别依赖性[5]。饲喂高脂饲料的小鼠每2 d在饲料中添加2 mg/kg CAP,12周后雄性小鼠肠道中普氏拟杆菌丰度恢复到对照组水平[35]。体外研究结果表明,CAP(0.33 mmol/L)对拟杆菌门(Bacteroidetes)的布氏普雷沃氏菌B14和脆弱拟杆菌25285均具有抑制作用,对厚壁菌门(phylum Firmicutes)的艰难梭菌(Clostridioides difficile 9689)具有拮抗作用,表明CAP影响肠道菌群的方式与临床中使用的抗生素相似[39]

2.2 CAP的抑菌作用及其机制

CAP具有重要的抑菌作用。抗生素耐药性和“禁抗”的到来,促使人们寻找天然的抗菌物质,以减少抗生素的使用[40]

抗生素耐药性形成的主要因素是细菌的多药耐药外排泵。迄今,已发现十多个针对金黄色葡萄球菌的外排泵[41-42]。研究发现,CAP(0.8~50.0 mg/L)是一种新型的NorA外排泵(EPI)抑制剂,不仅能抑制金黄色葡萄球菌EPI,还能降低金黄色葡萄球菌的侵袭能力,从而降低其毒力。说明CAP是一种外排泵抑制剂,其抗菌机制主要是通过抑制多药外排泵NorA的活性[43]

已有研究结果表明,灌服2 mg/kg的CAP能够抑制大肠杆菌生长和质粒转移,降低高脂摄入小鼠肠道的肠杆菌比例[35]。Oyedemi等[44]的研究结果也表明,CAP能够抑制外排多药耐药菌的生长和R-质粒结合转移,其具有广谱抗菌特性。但也有研究结果表明,墨西哥辣椒提取物能够抑制单核增生李斯特菌的生长,但对大肠杆菌O157∶H7无体外抑制作用[45]。这可能与Ca2+的需要量有关,革兰氏阳性菌单核细胞增生李斯特菌的肽聚糖层中,Ca2+和其他阳离子是其结构的必要组成,但革兰氏阴性菌大肠杆菌O157∶H7无此特性[46],因此需要确定有CAP的存在,并且CAP能够螯合钙。而Bacon等[45]已证明辣椒提取物能抑制单核增生李斯特菌V7培养菌,并利用光谱方法确定抗菌作用是由CAP产生。除了直接的抗菌特性,CAP在细菌感染过程中还发挥间接的疾病缓解作用。CAP能够通过抑制肿瘤坏死因子-α(TNF–α)表达来减轻幽门螺杆菌造成的胃炎损伤[47]。部分幽门螺杆菌具有致病性,可引起消化性溃疡、胃炎和胃癌[48]。体外试验结果也验证了这点,CAP可减少幽门螺杆菌的数量,以剂量依赖的方式降低幽门螺杆菌致病力,剂量在10 μg/ml和50 μg/ml时效果最好[49]。CAP能够通过增加重组组蛋白样类核结构蛋白(H-NS)表达量,从而抑制霍乱弧菌的霍乱毒素A亚基基因、毒力协同调节菌毛A亚单位基因和toxT基因表达[50]。综上所述,CAP的抗致病菌的作用机制分为2種:直接抑制致病菌外排泵;间接抗炎和降低致病菌毒力。目前关于CAP抗致病菌的研究结果主要来自体外研究,有待体内试验进行验证。

2.3 CAP对肠道菌群的调节机制

CAP作用于肠道菌群的潜在机制可分为直接依赖瞬时感受器香草酸受体1(TRPV1)和间接依赖TRPV1。CAP能够直接激活TRPV1通道来调节肠道功能和肠道菌群[51-52]。CAP还可刺激TRPV1通道,从而改变肠道的兴奋性和敏感性,并诱导局部释放神经肽(P物质和降钙素)[51-54]来改变肠道中的炎症和免疫条件,从而间接调节肠道菌群组成和结构[21]

但也有研究发现无论TRPV1通道是否激活,CAP都能够调节肠道菌群。在饲喂高脂饲料的野生小鼠和TRPV1基因敲除小鼠中,持续灌胃2 mg/kg CAP,均能够增加阿克曼菌属、拟杆菌属、普氏菌属、臭杆菌属、粪球菌属和异杆菌属的丰度,并减少脱硫弧菌、螺杆菌、埃希氏菌和萨特氏菌的丰度[55]。说明CAP对肠道菌群的调节作用,是依赖TRPV1通道激活机制和独立机制共同介导的结果。

3 CAP减轻肠道炎症的作用

在炎性肠病(IBD)、克罗恩病和溃疡性结肠炎的发病过程中,遗传因素与环境诱因相结合,导致慢性炎症和肠黏膜损伤,但肠炎的常规治疗会受免疫抑制剂和抗炎药副作用的影响。而CAP是一种天然物质,可加速肠道蠕动,但会造成肛门灼烧感[56]。因此,CAP香料往往是IBD患者最忌讳的食物成分[57]。IBD患者在结肠神经纤维、结肠上皮黏膜细胞和浸润性炎症细胞中表现出较高的TRPV-1免疫反应[58]。TRPV1表达量的增加与炎症的发生、炎症的生物标志物和内镜下根据黏膜外观评估的疾病无关[59]。此外,通过免疫组化检测分析,发现腹痛的严重程度与IBD患者结肠中TRPV1表达量的增加有关[60]。因此,CAP作为TRPV1受体的激动剂,可能加重这些患者的腹痛。然而,没有直接证据表明CAP会使IBD症状恶化。相反,CAP处理可改善腹痛症状[61]。连续4周每天添加0.75 mg的CAP能够使TRPV1受体脱敏,从而减轻腹痛[62]

通过对IBD的粪便样本检测发现,IBD肠道中具有促炎作用的细菌相对丰度增加,而肠道有益菌菌群相对丰度减少25%[63-64]。此外,克罗恩病的回肠黏膜中检出低丰度的普拉梭菌[65]。在外周血单核细胞培养和结肠炎动物模型中均发现普拉梭菌能够减少促炎因子,增加IL-10的分泌量[65]。此外,Kawaguchi等[66]的研究结果表明,IBD会过度激活患者CD4+T细胞,使得患者对食物抗原的免疫耐受性发生改变,类似于IL-10敲除小鼠。CAP能够增加厚壁菌门与拟杆菌门的比值和普拉梭菌丰度,从而改变免疫平衡,使IBD患者对食物抗原和共生菌具有更强的耐受力[67]。以上结果说明,添加CAP对克罗恩病具有有益的影响。

在动物模型上的研究结果也表明,CAP具有保护肠道黏膜的作用。三硝基苯磺酸会引起结肠溃疡,而CAP(640 μmol/l)与三硝基苯磺酸共同给药,能够降低三硝基苯磺酸引起的结肠溃疡,表明CAP具有减轻溃疡的作用[68]。在葡聚糖硫酸钠诱导的结肠炎中,添加CAP(1 mg/kg和10 mg/kg,连续6 d)可防止结肠黏膜损伤[69]。皮下注射消炎痛(非甾體类药物)的前30 min、后9 h添加CAP(10 mg/kg)可减轻大鼠小肠溃疡发生[70]。皮下注射CAP(50 mg/kg,连续3 d)能够降低醋酸造成的结肠损伤[71],表明抗炎作用是通过TRPV1传入感觉神经末梢介导的。此外,在葡聚糖硫酸钠诱导的结肠炎模型中,若破坏肠道中对CAP敏感的感觉神经元,会减轻CAP缓解肠道炎症的作用[69]。除此之外,研究还发现,CAP可能是通过NF-κB信号通路下调促炎因子TNF-α、IL-6、CXCL8、IL-8的表达,上调IL-10的表达[72-73]。CAP还能够增加闭锁蛋白、闭合小环蛋白-1的表达量影响F-肌动蛋白重组,从而调节紧密连接屏障功能,表明CAP的预处理对减轻脂多糖引起的炎症有益,并且可能有助于维持肠道完整性,减少猪养殖过程中肠道慢性炎症的发生[72-74]。然而,动物模型的病理生理机制可能与炎症性肠病的潜在机制不同。因此,还需要进一步研究来验证CAP在畜牧生产中缓解肠道炎症的效果。

综上所述,CAP在减轻肠道炎症的症状方面具有正向作用,但要注意添加剂量,高浓度CAP(超过100 μmol/L)对细胞具有毒性作用。另外,推测在断奶仔猪饲料中添加适量的CAP具有肠道保健和预防腹泻的作用[9],但这需要进一步的体内试验研究验证。

4 展望

综上所述,CAP对肠道菌群具有调节作用,能够促进普拉梭菌和罗斯氏菌定殖与相对丰度的增加,两者是能量代谢调控和共生菌群平衡所需的产丁酸盐细菌。并且CAP能够减少产脂多糖的革兰氏阴性菌的相对丰度,增强肠道屏障,从而阻止脂多糖进入血液循环。同时CAP 还能够通过抑制毒力基因,来降低致病菌的毒力。但CAP 对特定细菌属的影响在不同研究中的结果并不一致,这主要可能是CAP浓度和饲粮组成以及试验动物不同与生理状态不同造成的差异。CAP重塑肠道微生物群和改变特定细菌相对丰度的机制尚未完全被阐明,有待进一步验证。

CAP能够通过调整肠道菌群组成和相对丰度来稳定肠道的内环境,抑制肠道局部的炎症。但需要注意CAP的使用剂量,过多地添加CAP会适得其反。目前CAP对肠道功能和肠道菌群组成以及缓解肠炎的研究主要集中在小鼠上,在畜禽上的研究与应用相对较少,后续还需要在不同畜禽中进一步验证,从而为CAP在畜禽生产以及减轻肠道炎症与腹泻中的应用提供理论参考依据。

参考文献:

[1] ABD AL HALEEM E N, HASAN W Y S, ARAFA H M M. Therapeutic effects of thymoquinone or capsaicin on acrylamide-induced reproductive toxicity in rats mediated by their effect on oxidative stress, inflammation, and tight junction integrity [J]. Drug and Chemical Toxicology, 2021, 7: 1-13.

[2] CHEN H, LI N, ZHAN X, et al. Capsaicin protects against lipopolysaccharide-induced acute lung injury through the HMGB1/NF-κB and PI3K/AKT/mTOR pathways [J]. Journal of Inflammation Research, 2021, 14: 5291-5304.

[3] HOSSEINI M, TAVALAEE M, RAHMANI M, et al. Capsaicin improves sperm quality in rats with experimental varicocele [J]. Andrologia, 2020, 52(11): 1-8.

[4] GU H, YANG Z, YU W Q, et al. Antibacterial activity of capsaicin against sectional cariogenic bacteria [J]. Pakistan Journal of Zoology, 2019, 51(2): 681-687.

[5] WANG F H, HUANG X Y, CHEN Y Y, et al. Study on the effect of capsaicin on the intestinal flora through high-throughput sequencing [J]. ACS Omega, 2020, 5(2): 1246-1253.

[6] MARINI E, MAGI G, MINGOIA M, et al. Antimicrobial and anti-virulence activity of capsaicin against erythromycin-resistant, cell-invasive group a streptococci [J]. Front Microbiol, 2015, 6: 1-7.

[7] QIU J Z, NIU X D, WANG J F, et al. Capsaicin protects mice from community-associated methicillin-resistant staphylococcus aureus pneumonia [J]. PLoS One, 2012, 7(3): 1-10.

[8] FILIK G, COSKUN I, TEKIN O K, et al. Effects of dietary hot pepper waste powder on gut health and small intestine properties in japanese quails [J]. Brazilian Journal of Poultry Science, 2020, 22(4): 1-8.

[9] LIU Y, SONG M, CHE T M, et al. Dietary plant extracts modulate gene expression profiles in ileal mucosa of weaned pigs after an Escherichia coli infection[J]. Journal of Animal Science, 2014, 92(5): 2050-2062.

[10]NAMTED S, POEIKHAMPHA T, RAKANGTHONG C, et al. Effect of capsaicin and capsaicin plus DL-methionine hydroxy analog in diet on growth performance and gastrointestinal conditions of nursery pigs [J]. Indian Journal of Animal Research, 2019, 54(6): 703-708.

[11]PRAKASH U, SRINIVASAN K. Beneficial influence of dietary spices on the ultrastructure and fluidity of the intestinal brush border in rats [J]. The British Journal of Nutrition, 2010, 104(1): 31-39.

[12]PLATEL K, SRINIVASAN K. Studies on the influence of dietary spices on food transit time in experimental rats [J]. Nutrition Research, 2001, 21(9): 1309-1314.

[13]PLATEL K, SRINIVASAN K. Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats [J]. Nahrung Food, 2000, 44(1): 42-46.

[14]BHAT B G, SRINIVASAN M R, CHANDRASEKHARA N. Influence of curcumin and capsaicin on the composition and secretion of bile in rats [J]. Journal of Food Science and Technology, 1984, 21: 225-227.

[15]PRAKASH U N, SRINIVASAN K. Fat digestion and absorption in spice-pretreated rats [J]. Journal of the Science of Food and Agriculture, 2012, 92(3): 503-510.

[16]PRAKASH U, SRINIVASAN K. Enhanced intestinal uptake of iron, zinc and calcium in rats fed pungent spice principles-piperine, capsaicin and ginger (Zingiber officinale) [J]. Journal of Trace Elements in Medicine and Biology, 2013, 27(3): 184-190.

[17]VEDA S, SRINIVASAN K. Influence of dietary spices-black pepper, red pepper and ginger on the uptake of β-carotene by rat intestines [J]. Journal of Functional Foods, 2009, 1(4): 394-398.

[18]VEDA S, SRINIVASAN K. Influence of dietary spices on the in vivo absorption of ingested β-carotene in experimental rats [J]. British Journal of Nutrition, 2011, 105(10): 1429-1438.

[19]TAKAHASHI A, SAKAGUCHI H, HIGUCHI O, et al. Intestinal absorption of black chokeberry cyanidin 3-glycosides is promoted by capsaicin and capsiate in a rat ligated small intestinal loop model [J]. Food Chemistry, 2019, 277: 323-326.

[20]BLEY K, BOORMAN G, MOHAMMAD B, et al. A comprehensive review of the carcinogenic and anticarcinogenic potential of capsaicin [J]. Toxicologic Pathology, 2012, 40(6): 847-873.

[21]SONG J X, REN H, GAO Y F, et al. Dietary capsaicin improves glucose homeostasis and alters the gut microbiota in obese diabetic ob/ob mice [J]. Frontiers in Physiology, 2017, 8: 1-12.

[22]PASSALACQUA L F M, JIMENEZ R M, FONG J Y, et al. Allosteric modulation of the faecalibacterium prausnitzii hepatitis delta virus-like ribozyme by glucosamine 6-phosphate: the substrate of the adjacent gene product [J]. Biochemistry, 2017, 56(45): 6006-6014.

[23]KHAN M T, DUNCAN S H, STAMS A J, et al. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases [J]. The ISME Journal, 2012, 6(8): 1578-1585.

[24]PROSBERG M, BENDTSEN F, VIND I, et al. The association between the gut microbiota and the inflammatory bowel disease activity: a systematic review and meta-analysis [J]. Scandinavian Journal of Gastroenterology, 2016, 51(12): 1407-1415.

[25]MIQUEL S, MARTíN R, ROSSI O, et al. Faecalibacterium prausnitzii and human intestinal health [J]. Current Opinion in Microbiology, 2013, 16(3): 255-261.

[26]KARLSSON F H, TREMAROLI V, NOOKAEW I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control [J]. Nature, 2013, 498(7452): 99-103.

[27]FERREIRA-HALDER C V, FARIA A V S, ANDRADE S S. Action and function of faecalibacterium prausnitzii in health and disease [J]. Best Practice and Research Clinical Gastroenterology, 2017, 31(6): 643-648.

[28]DEMIRCI M, TOKMAN H B, UYSAL H K, et al. Reduced akkermansia muciniphila and faecalibacterium prausnitzii levels in the gut microbiota of children with allergic asthma [J]. Allergologia et Immunopathologia, 2019, 47(4): 365-371.

[29]KANG C, ZHANG Y, ZHU X H, et al. Healthy subjects differentially respond to dietary capsaicin correlating with specific gut enterotypes [J]. The Journal of Clinical Endocrinology and Metabolism, 2016, 101(12): 4681-4689.

[30]LONG S F, LIU S J, WANG J, et al. Natural capsicum extract replacing chlortetracycline enhances performance via improving digestive enzyme activities, antioxidant capacity, anti-inflammatory function, and gut health in weaned pigs [J]. Animal Nutrition, 2021, 7(2): 305-314.

[31]TAMANAI-SHACOORI Z, SMIDA I, BOUSARGHIN L, et al. Roseburia spp.: a marker of health? [J]. Future Microbiology, 2017, 12: 157-170.

[32]朱 靖,林 紅,裴明财,等. 辣椒碱对泌乳前期奶牛产奶性能、血清生化指标、瘤胃微生物及代谢组的影响 [J]. 动物营养学报, 2021, 33(11): 6290-6299.

[33]REN C C, ZHANG Q X, DE HAAN B J, et al. Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation [J]. Scientific Reports, 2016, 6:1-12.

[34]LI Z, WANG W W, LIU D, et al. Effects of Lactobacillus acidophilus on gut microbiota composition in broilers challenged with clostridium perfringens [J]. PLoS One, 2017, 12(11): 1-16.

[35]BABOOTA R K, MURTAZA N, JAGTAP S, et al. Capsaicin-induced transcriptional changes in hypothalamus and alterations in gut microbial count in high fat diet fed mice [J]. The Journal of Nutritional Biochemistry, 2014, 25(9): 893-902.

[36]SHARMA S, JAIN S, NAIR G N, et al. Capsicum annuum enhances L-lactate production by Lactobacillus acidophilus: implication in curd formation [J]. Journal of Dairy Science, 2013, 96(7): 4142-4148.

[37]HUI S C, LIU Y, CHEN M T, et al. Capsaicin improves glucose tolerance and insulin sensitivity through modulation of the gut microbiota-bile acid-FXR axis in type 2 diabetic db/db mice [J]. Molecular Nutrition and Food Research, 2019, 63(23): 1-13.

[38]WEXLER H M. Bacteroides: the good, the bad, and the nitty-gritty [J]. Clinical Microbiology Reviews, 2007, 20(4): 593-621.

[39]LAKES J E, RICHARDS C I, FLYTHE M. Inhibition of Bacteroidetes and Firmicutes by select phytochemicals [J]. Anaerobe, 2019, 61: 1-15.

[40]HEMAISWARYA S, KRUTHIVENTI A K, DOBLE M. Synergism between natural products and antibiotics against infectious diseases [J]. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 2008, 15(8): 639-652.

[41]POOLE K. Efflux pumps as antimicrobial resistance mechanisms [J]. Annals of Medicine, 2007, 39(3): 162-176.

[42]JANG S. Multidrug efflux pumps in staphylococcus aureus and their clinical implications [J]. Journal of Microbiology, 2016, 54(1): 1-8.

[43]KALIA N P, MAHAJAN P, MEHRA R, et al. Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of staphylococcus aureus [J]. The Journal of Antimicrobial Chemotherapy, 2012, 67(10): 2401-2408.

[44]OYEDEMI B O, KOTSIA E M, STAPLETON P D, et al. Capsaicin and gingerol analogues inhibit the growth of efflux-multidrug resistant bacteria and R-plasmids conjugal transfer [J]. Journal of Ethnopharmacology, 2019, 245: 1-9.

[45]BACON K, BOYER R, DENBOW C, et al. Antibacterial activity of jalapeo pepper (Capsicum annuum var. annuum) extract fractions against select foodborne pathogens [J]. Food Science and Nutrition, 2017, 5(3): 730-738.

[46]MATIAS V R, AL-AMOUDI A, DUBOCHET J, et al. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa [J]. Journal of Bacteriology, 2003, 185(20): 6112-6118.

[47]TOYODA T, SHI L, TAKASU S, et al. Anti-inflammatory effects of capsaicin and piperine on Helicobacter pylori-induced chronic gastritis in mongolian gerbils [J]. Helicobacter, 2016, 21(2): 131-142.

[48]BURKITT M D, DUCKWORTH C A, WILLIAMS J M, et al. Helicobacter pylori-induced gastric pathology: insights from in vivo and ex vivo models [J]. Disease Models and Mechanisms, 2017, 10(2): 89-104.

[49]JONES N L, SHABIB S, SHERMAN P M. Capsaicin as an inhibitor of the growth of the gastric pathogen Helicobacter pylori [J]. FEMS Microbiology Letters, 1997, 146(2): 223-227.

[50]CHATTERJEE S, ASAKURA M, CHOWDHURY N, et al. Capsaicin, a potential inhibitor of cholera toxin production in Vibrio cholerae [J]. FEMS Microbiology Letters, 2010, 306(1): 54-60.

[51]ALLAIS L, DE SMET R, VERSCHUERE S, et al. Transient receptor potential channels in intestinal inflammation: what is the impact of cigarette smoking? [J]. Pathobiology : Journal of Immunopathology, Molecular and Cellular Biology, 2017, 84(1): 1-15.

[52]NILIUS B. Transient receptor potential (TRP) cation channels: rewarding unique proteins [J]. Bulletin et Mémoires de L Académie Royale de Médecine de Belgique, 2007, 162(3/4): 244-253.

[53]CLAPHAM D E. TRP channels as cellular sensors [J]. Nature, 2003, 426(6966): 517-524.

[54]WILES T J, JEMIELITA M, BAKER R P, et al. Host gut motility promotes competitive exclusion within a model intestinal microbiota [J]. PLoS Biology, 2016, 14(7):1-24.

[55]WANG Y W, TANG C, TANG Y, et al. Capsaicin has an anti-obesity effect through alterations in gut microbiota populations and short-chain fatty acid concentrations [J]. Food and Nutrition Research, 2020, 64: 1-8.

[56]GONLACHANVIT S, FONGKAM P, WITTAYALERTPANYA S, et al. Red chili induces rectal hypersensitivity in healthy humans: possible role of 5HT-3 receptors on capsaicin-sensitive visceral nociceptive pathways [J]. Alimentary Pharmacology and Therapeutics, 2007, 26(4): 617-625.

[57]BERGERON F, BOUIN M, D'AOUST L, et al. Food avoidance in patients with inflammatory bowel disease: what, when and who? [J]. Clinical Nutrition, 2018, 37(3): 884-889.

[58]YIANGOU Y, FACER P, DYER N H, et al. Vanilloid receptor 1 immunoreactivity in inflamed human bowel [J]. Lancet, 2001, 357(9265): 1338-1339.

[59]LUO C X, WANG Z J, MU J X, et al. Upregulation of the transient receptor potential vanilloid 1 in colonic epithelium of patients with active inflammatory bowel disease [J]. International Journal of Clinical and Experimental Pathology, 2017, 10(11): 11335-11344.

[60]CARR N J, BIBEAU F, BRADLEY R F, et al. The histopathological classification, diagnosis and differential diagnosis of mucinous appendiceal neoplasms, appendiceal adenocarcinomas and pseudomyxoma peritonei [J]. Histopathology, 2017, 71(6): 847-858.

[61]MOTTE J, AMBROSIUS B, GR?TER T, et al. Capsaicin-enriched diet ameliorates autoimmune neuritis in rats [J]. Journal of Neuroinflammation, 2018, 15(1): 1-13.

[62]FüHRER M, HAMMER J. Effect of repeated, long term capsaicin ingestion on intestinal chemo- and mechanosensation in healthy volunteers [J]. Neurogastroenterology and Motility, 2010, 21(5): 521-527.

[63]MATSUOKA K, KANAI T. The gut microbiota and inflammatory bowel disease [J]. Seminars in Immunopathology, 2015, 37(1): 47-55.

[64]DEMIRBILEK S, ERSOY M O, DEMIRBILEK S, et al. Small-dose capsaicin reduces systemic inflammatory responses in septic rats [J]. Anesthesia and Analgesia, 2004, 99(5): 1501-1507.

[65]SOKOL H, PIGNEUR B, WATTERLOT L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of crohn disease patients [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(43): 16731-16736.

[66]KAWAGUCHI T, MORI M, SAITO K, et al. Food antigen-induced immune responses in crohn's disease patients and experimental colitis mice [J]. Journal of Gastroenterology, 2015, 50(4): 394-405.

[67]KANG C, ZHANG Y, ZHU X H, et al. Healthy subjects differentially respond to dietary capsaicin correlating with specific gut enterotypes [J]. Journal of Clinical Endocrinology and Metabolism, 2016(12):4681-4689.

[68]GOSO C, EVANGELISTA S, TRAMONTANA M, et al. Topical capsaicin administration protects against trinitrobenzene sulfonic acid-induced colitis in the rat [J]. European Journal of Pharmacology, 1993, 249(2): 185-190.

[69]OKAYAMA M, TSUBOUCHI R, KATO S, et al. Protective effect of lafutidine, a novel histamine H2-receptor antagonist, on dextran sulfate sodium-induced colonic inflammation through capsaicin-sensitive afferent neurons in rats [J]. Digestive Diseases and Sciences, 2004, 49(10): 1696-1704.

[70]KATO S, TANAKA A, KUNIKATA T, et al. Protective effect of lafutidine against indomethacin-induced intestinal ulceration in rats: relation to capsaicin-sensitive sensory neurons [J]. Digestion, 2000, 61(1): 39-46.

[71]ELIAKIM R, KARMELI F, OKON E, et al. Ketotifen ameliorates capsaicin-augmented acetic acid-induced colitis [J]. Digestive Diseases and Sciences, 1995, 40(3): 503-509.

[72] ZHAO X Y, DONG B Q, FRIESEN M, et al. Capsaicin attenuates lipopolysaccharide-induced inflammation and barrier dysfunction in intestinal porcine epithelial cell line-J2 [J]. Frontiers in Physiology, 2021, 12: 1-14.

[73]SHEKARAPPA S B, KANDAGALLA S, MALOJIRAO V H, et al. A systems biology approach to identify the key targets of curcumin and capsaicin that downregulate pro-inflammatory pathways in human monocytes [J]. Computational Biology and Chemistry, 2019, 83: 1-13.

[74] CONG X, ZHANG Y, YANG N Y, et al. Occludin is required for TRPV1-modulated paracellular permeability in the submandibular gland [J]. Journal of Cell Science, 2013, 126(5): 1109-1121.

(責任编辑:陈海霞)

猜你喜欢

肠道菌群
补充双歧杆菌与鼠李糖乳杆菌三联活菌制剂对肠道手术后肠道菌群的影响
UPLC—ESI—Q—TOF—MS/MS分析槲皮苷在大鼠
诱导小鼠肠道菌群改变对血脂影响的初步探究
高铅血症儿童肠道菌群构成变化研究
气相色谱法快速分析人唾液中7种短链脂肪酸
大鼠肠道菌群对芍药苷体外代谢转化的研究
肠道菌群与非酒精性脂肪性肝病
顶空气相色谱 质谱联用法分析粪便中挥发性脂肪酸