APP下载

普定喀斯特次生林木本植物叶生活型比例和谱系多样性的驱动因素

2023-05-30毛艳娇肖梓波邓伟张潮汤晓辛金毅

广西植物 2023年3期
关键词:次生林喀斯特谱系

毛艳娇 肖梓波 邓伟 张潮 汤晓辛 金毅

摘 要:  為探讨喀斯特森林落叶阔叶植物(DBL)与常绿阔叶植物(EBL)比例和生物多样性差异及其驱动因素,该研究以贵州省普定县43个喀斯特次生林样地作为研究对象,采用广义线性回归模型、模型选择和Mantel检验的多元回归方法,分析地理距离、环境(包括地形和基岩类型)和人类活动等因素对样地内落叶阔叶植物和常绿阔叶植物所占比例以及谱系多样性的影响。结果表明:(1)普定喀斯特次生林样地内落叶阔叶植物与常绿阔叶植物虽在物种丰富度和个体多度上总体相当,但样地间差异较大;样地落叶与常绿阔叶植物谱系alpha多样性(即SES.MPD)无明显差异,但落叶阔叶植物谱系beta多样性(即SES.betaMPD)明显小于常绿阔叶植物。(2)落叶阔叶植物丰富度占比和相对多度随基岩类型改变而变化,均表现为泥灰岩森林高于石灰岩森林,而落叶阔叶植物丰富度占比随人类活动增强而上升。(3)样地落叶阔叶植物谱系alpha多样性随人类活动增强而升高,而常绿阔叶植物谱系alpha多样性受环境和人类活动等因素的作用不明显;落叶阔叶植物和常绿阔叶植物谱系beta多样性受不同因素调节,前者随基岩类型和人类活动等因素变化而升高,后者则随地理距离增加而升高。该研究揭示了普定喀斯特次生林内落叶阔叶植物和常绿阔叶植物比例受到环境条件和人类活动共同调控,在此基础上,落叶阔叶植物谱系多样性受到地形和基岩类型等因素介导的生境过滤等生态位过程影响,而常绿阔叶植物谱系多样性则受到地理距离所介导的扩散限制等空间过程的影响。该研究有助于了解喀斯特森林生物多样性维持机制,为喀斯特森林经营管理提供理论支持。

关键词: 地形, 人类活动, 基岩类型, 群落构建, 乔木层, 叶生活型

中图分类号:  Q948

文献标识码:  A

文章编号:  1000-3142(2023)03-0569-11

Drivers of the leaf habit ratio and phylogenetic

diversities of woody plants in the secondary

karst forests in Puding, Guizhou

MAO Yanjiao1, XIAO Zibo1,2,3, DENG Wei1,2,3, ZHANG Chao1,2,

TANG Xiaoxin2,3, JIN Yi1,2*

( 1. School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; 2. Key Laboratory of National Forestry and Grassland

Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025,

China; 3. Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Guiyang 550025, China )

Abstract:  In order to understand of the drivers of the ratio of deciduous broad-leaved plants (DBL) to evergreen  broad-leaved plants (EBL) and the diversities of each leaf habit group in the karst forests, with 43 secondary karst forest sample plots in Puding County of Guizhou Province as study objects, we adopted statistical methods such as the generalized linear regression model, model selection and the multiple regression extension of the Mantel test, and we examined the effects of geographical distance, environment (including topography and bedrock type), and human activities on the proportion of DBL and EBL  as well as their phylogenetic alpha and beta diversities. The results were as follows: (1) The DBL and EBL in puding were about equal in overall richness and abundance, but large differences existed among sample plots; the phylogenetic alpha diversity(i.e., SES.MPD) of DBL and EBL  was not different, whereas the phylogenetic beta diversity(i.e., SES.betaMPD) of DBL between sample plots was smaller than EBL plants. (2) The richness ratio and relative abundance of DBL  shifted with bedrock type, and displayed as the marlstone forests comprised higher richness ratio and relative abundance of DBL compared with limestone forests. In addition, the richness ratio of DBL also increased as human activities intensified. (3) The phylogenetic alpha diversity of DBL  increased with the intensified human activities, whereas the phylogenetic alpha diversity of EBL  was not influenced by the environmental factors and human activities, which might partly be due to the conserved resource utilization strategies of EBL that blunt their claim for the resources released by human disturbance. The phylogenetic beta diversities of DBL and EBL, however, were shaped by different sets of factors, the former increased with the change of bedrock type and the intensity of human activities, the latter increased with geographical distance. The findings imply that the ratio of DBL to EBL  in the secondary karst forests of Puding are mainly driven by environment conditions and human activities, based on which the phylogenetic diversities of DBL  are regulated by niche processes such as habitat filtering mediated by topography and bedrock type, whereas EBL are shaped by spatial processes such as dispersal limitation mediated by geographical distance. This study sheds light on the biodiversity maintenance mechanisms of karst forests, and provides theoretical support for the management of karst forests.

Key words: topography, human activities, bedrock type, community assembly, tree layer, leaf habit

在我国亚热带西南地区的喀斯特地貌上,广泛生长着一类非地带性森林,被称为喀斯特森林(屠玉鳞,1989;周游游等,2003),主要分布在贵州、广西及云南等地区(吴征镒,1980)。典型的喀斯特森林通常为常绿落叶阔叶混交林(朱守谦,1997;兰斯安等,2016),林内含有较大比例的落叶阔叶植物。

喀斯特地貌上的地形(郑鸾和龙翠玲,2020)和基岩类型(Cottle, 2004; 张喜,2007; Li et al., 2022)等环境因子复杂多样,通过光照、土壤和水分等,调控着喀斯特森林内的植物组成。研究表明,与常绿阔叶植物相比,落叶阔叶植物更喜好高光照(Jin et al., 2018)和肥沃土壤等环境条件(Fang et al., 2016)。同时,长期的人类活动干扰对西南地区喀斯特森林物种组成产生了重要影响(姚长宏等,2001;刘长成等,2021;贺忠权等,2021)。喀斯特森林受到干扰较多(郭柯等,2011)且植被演替慢(李婷婷等,2021)等,可能有利于落叶阔叶植物在喀斯特森林内持久生存。但是,目前尚不清楚地形、基岩类型和人类活动干扰等因素,如何共同影响喀斯特森林内落叶和常绿阔叶木本被子植物所占比例。

Bews(1927)和Axelrod(1966)从被子植物起源演化推定,常绿性状较落叶性状古老。近期针对我国亚热带常绿阔叶林内落叶和常绿阔叶木本被子植物谱系多样性差异的研究结论(车俭等,2020)也支持该观点,但目前还不清楚在西南喀斯特森林内落叶阔叶植物谱系多样性是否也小于常绿阔叶植物。此外,已有研究表明我国亚热带地区森林植物谱系多样性受到地形(王雷宏等,2020)、基岩类型(Shi et al., 2021)和人类干扰(Feng et al., 2014)等因素调控。同时,由于常绿和落叶阔叶植物的生态习性存在明显差异(Givnish, 2002; 车俭等,2020),两者分布格局的驱动因子也不同(Tang & Ohsawa, 2002; Fang et al., 2016)。据此,推测喀斯特森林内常绿和落叶阔叶植物谱系多样性及其驱动因子也应存在差异,但目前尚没有研究进行验证。

综上所述,本研究以贵州省中部普定县境内的43个喀斯特次生林样地作为研究对象(贺忠权等,2021),拟探讨普定喀斯特次生林木本被子植物的叶生活型比例、谱系多样性格局及其驱动过程,旨在回答以下问题:(1)空间、环境(地形、基岩类型)和人类活动等因素如何影响普定喀斯特次生林内落叶阔叶植物和常绿阔叶植物所占比例;(2)常绿和落叶阔叶植物之间的谱系多样性及其驱动因子有何差异。以期更深入认识喀斯特森林生物多样性维持机制,为喀斯特森林经营和管理政策的制定提供理论支持。

1 材料与方法

1.1 研究地点与材料

贺忠权等(2021)公布了黔中高原86个喀斯特森林样地数据。这批样地分布在贵州省普定县、镇宁县、长顺县和黔西县等地,调查时间集中在2007—2009年、2013年和2019—2020年。其中,本研究选择调查时间为2019年7月至2020年8月,调查人为贺忠权和蔡先立,均选择普定县境内的43个样地作为研究对象(图1)。本研究涉及样地的地理分布范围为105°33′47″—105°55′3″ E,26°11′42″—26°29′12″ N,单个样地面积为400 m2(20 m × 20 m),样地森林类型均为次生林。

本研究所使用数据为样地内胸径(diameter at breast height,DBH)≥ 3 cm的所有木质非藤本被子植物植株。单个样地包含个体多度平均69株,范围27~124株;单个样地包含物种丰富度均值12种,范围6~19种。43个样地包含总个体多度2 946株,总物种丰富度98种,隶属于40科67属。按叶生活型(leaf habit)划分为落叶阔叶植物1 628株53种,常绿阔叶植物1 318株45种。样地环境因子包括地形和基岩岩性。地形包括海拔、坡度、坡向和坡位。其中,参考Legendre等(2009)研究,将坡向分解为北向和東向两个分量进行后续分析。坡位为有序分类变量,从坡下部、坡中部、坡上部到坡顶,位置逐渐升高。基岩类型包括石灰岩和泥灰岩。样地内人类活动主要为樵采、放牧和采药等,按强度可分为轻度和中度(贺忠权等,2021;表1)。

1.2 谱系树构建

通过R语言Taxonstand软件包的“TPL”函数(Cayuela et al., 2012)访问The Plant List网站(http://www.theplantlist.org),查询本研究涉及的98种木本被子植物的科名。采用V.PhyloMaker2软件包“phylo.maker”函数的Scenario 3方式构建种级谱系树(Jin & Qian, 2022)。通过phytools软件包的“phylosig”函数(Revell, 2012),分析98种被子植物叶生活型的谱系信号。

1.3 统计分析方法

通过Phylocom 4.2软件(Webb et al., 2008)的“comstruct”函数计算落叶阔叶植物和常绿阔叶植物的净亲缘关系指数(net relatedness index, NRI )和平均谱系距离(mean pairwise distance, MPD);采用Wilcoxon秩和检验评估落叶阔叶植物和常绿

阔叶植物的MPD差异。谱系多样性采用alpha多样性(standardized effect size of MPD,SES.MPD)和beta多样性(standardized effect size of MPD between samples,SES.betaMPD)指数衡量(车俭等,2020),前者为标准化的群落内平均种间谱系距离,值越大则谱系alpha多样性越高,后者为标准化的群落间平均种间谱系距离,值越大则谱系beta多样性越高(Swenson, 2014),通过“comstruct”和“comdist”函数分别计算这2个指数。采用Wilcoxon符号秩检验评估落叶阔叶植物和常绿阔叶植物SES.MPD和SES.betaMPD差异。

采用线性回归模型分析地形、基岩类型和人类活动对叶生活型组成比例以及谱系alpha多样性的影响。首先,通过ape软件包(Paradis & Schliep, 2019)的“Moran.I”函數发现落叶阔叶植物丰富度占比存在空间自相关(Morans I=0.101,P< 0.05)。因此,通过nlme软件包的“gls”函数进行广义线性回归模型分析,了解落叶阔叶植物丰富度占比的影响因素。通过Rcompanion软件包(Mangiafico, 2022)的“nagelkerke”函数计算广义线性回归模型的伪R方(pseudo R-squared)。其余因变量无空间自相关,采用线性回归模型评估地形、基岩类型和人类活动的影响。然后,通过MuMIn软件包(Bartoń, 2019)的“dredge”函数进行模型选择,选出AICc值最小模型作为最优模型(Jin et al., 2018)。其次,采用ecodist软件包的“MRM”函数(Goslee & Urban, 2007)进行Mantel检验的多元回归分析(Multiple regression extension of the Mantel test),以了解地理距离、地形、基岩类型和人类活动对谱系beta多样性的影响。最后,通过geodist软件包的“geodist”函数计算样地间地理距离(Padgham & Sumner, 2020);通过“dist”函数计算连续变量和有序分类变量的欧氏距离;通过cluster软件包的“gower”函数计算其余分类变量的高尔距离(Maechler et al., 2022)。以上所有统计分析在R 3.6.1中完成(R Core Team, 2019)。

2 结果与分析

2.1 木本被子植物叶生活型比例

衡量叶生活型比例的指标是落叶阔叶植物丰富度占比和相对多度,前者为落叶阔叶植物丰富度与总丰富度比值,后者为落叶阔叶植物个体多度与总多度比值。这2个指标值上升表示落叶阔叶植物优势增大;反之,则是常绿阔叶植物优势增大。在普定43个喀斯特次生林样地内,落叶阔叶与常绿阔叶木本被子植物的丰富度和多度大致相当,表现为落叶阔叶植物物种丰富度占比平均为0.495,分布范围为0.231~0.857(图2:A);落叶阔叶植物个体相对多度平均为0.554,范围为0.259~0.848(图2:B)。此外,98种木本被子植物的叶生活型具有显著的谱系信号(Pagels lambda=0.483, P<0.001)。

2.2 木本被子植物谱系多样性差异

落叶阔叶性状在98种木本被子植物构成的谱系树上的分布呈现为明显收敛结构(NRI=4.244, P<0.001),而常绿阔叶性状则并未呈现出收敛或发散结构(NRI =-1.337, P=0.921);落叶阔叶植物的平均种间谱系距离(MPD=227.443 Ma)比常绿阔叶植物(MPD=240.651 Ma)更小(P<0.001; Wilcoxon秩和检验)。43个样地的落叶阔叶植物与常绿阔叶植物谱系alpha多样性水平无明显差异(图3:A; P=0.176, Wilcoxon符号秩检验),而样地间落叶阔叶植物谱系beta多样性比常绿阔叶植物更低(图3:B; P<0.001, Wilcoxon符号秩检验)。

2.3 木本被子植物叶生活型比例和谱系多样性差异的驱动因素

普定43个喀斯特次生林样地内,落叶阔叶植物丰富度占比的最优拟合模型(Rpseudo2=0.334)主要包含了基岩类型和人类活动(表2),表现为泥灰岩森林所含落叶阔叶植物种类比例比石灰岩森林更高(图4:A);人类活动增强引起落叶阔叶植物种类丰富度占比上升(图4:B)。落叶阔叶植物相对多度的最优拟合模型(Radj2=0.09)仅包含基岩类型,表现为泥灰岩森林所含落叶阔叶植物相对多度也高于石灰岩森林(表2;图4:A)。样地内落叶阔叶植物谱系alpha多样性(即SES.MPD)的最优拟合模型(Radj2=0.245)包含了人类活动(效应值0.494,P=0.004)和海拔(效应值-0.002,P=0.069),表现为随人类活动增强,落叶阔叶植物谱系alpha多样性上升;而常绿阔叶植物谱系alpha多样性的最优拟合模型则并不包含任何因子。MRM模型(R2=0.178)显示落叶阔叶植物谱系beta多样性(即SES.betaMPD)随基岩类型(图5:A)、人类活动强度(图5:B)以及坡位的改变而升高;另一方面,MRM模型(R2=0.08)显示常绿阔叶植物谱系beta多样性随地理距离增加而升高(表3)。

3 讨论与结论

喀斯特森林广泛分布于我国西南地区且蕴涵着丰富的植物多样性,而植物多样性对该地区自然环境的稳定发挥着重要作用(Fu et al., 2019)。以往研究表明喀斯特森林的环境条件有利于落叶阔叶植物生长(Jiang et al., 2016; Liu et al., 2019);同时,也有研究表明人类活动对喀斯特森林组成产生了巨大影响(谢标和杨永岗,1998;赵东等,2006)。在此基础上,本研究综合分析了空间、环境条件和人类活动对贵州普定县喀斯特次生林木本被子植物叶生活型比例以及不同叶生活型植物谱系多样性的影响。

3.1 木本被子植物叶生活型比例及驱动因素

本研究发现基岩类型对普定喀斯特次生林落叶阔叶植物比例存在重要作用,与其他喀斯特森林中的研究结论一致(Toure & Ge, 2014; Liu et al., 2019)。例如,Toure 和 Ge(2014)发现基岩类型是控制广西龙虎山喀斯特森林植物丰富度的重要环境因子。本研究发现,与石灰岩相比,泥灰岩上生长的喀斯特森林含有更高比例的落叶阔叶植物丰富度和个体多度,部分原因可能是泥灰岩基质上的土壤较石灰岩基质上的土壤更肥沃且通气透水性能更好,蓄水能力更强等(黄琼玲,1984;孙启堂和苗本胜,1991),更有助于落叶阔叶植物定居(Monk, 1966;Pausas & Carreras, 1995; 张喜,2007;Fayolle et al., 2012)。例如,张喜(2007)发现黔中地区的退化喀斯特森林自然恢复过程中,土壤量和养分积累呈上升趋势,落叶阔叶植物物种丰富度和植株密度也呈上升趋势且增幅均快于常绿阔叶植物。若喀斯特植被恢复与土壤条件存在反馈关系,则泥灰岩较石灰岩更肥沃的土壤(黄琼玲,1984)可能有利于促进植被与土壤间的反馈,加快喀斯特森林的恢复进程,有利于泥灰岩森林比石灰岩森林积累更大比例的落叶阔叶植物。此外,研究发现人类活动干扰通常会导致森林群落组成发生改变(Fuller et al., 1998; Mcmichael et al., 2017; Yang et al., 2021)。本研究发现,随着人类活动的增强,普定喀斯特次生林内落叶阔叶植物的物种丰富度呈上升趋势。这可能是因为人类干扰的增强可导致喀斯特森林群落高度降低、生物量减小(喻理飞等,2002),改变林内环境条件(如增强光照)等,朝着有利于落叶阔叶植物的方向倾斜(姚长宏等,2001;白坤栋等,2015;林红玲等,2021)。例如,Miura等(2001)和Jin等(2018)研究发现,相对于常绿阔叶植物,干扰引起的高光照等环境条件更有助于森林内落叶阔叶植物的更新。

3.2 木本被子植物谱系多样性差异及驱动因素

通过NRI与MPD指数来了解木本被子植物谱系结构和种间亲缘关系,NRI值越小,MPD值越大,表示譜系结构越发散,种间亲缘关系越远;反之,谱系结构越收敛,种间亲缘关系则越近。普定喀斯特次生林内落叶阔叶植物NRI大于常绿植物而MPD小于常绿阔叶植物,与我国亚热带常绿阔叶林有一致规律(车俭等,2020)。但是,本研究发现样地内的落叶阔叶植物alpha多样性并不低于常绿阔叶植物,与车俭等(2020)的结果不一致,部分原因可能是由于人类活动干扰有利于落叶阔叶植物更新。具体而言,在人类活动干扰增大的背景下,普定喀斯特次生林内落叶阔叶植物谱系alpha多样性升高,而常绿阔叶植物谱系alpha多样性并未随之改变。这种差异性响应可能逐渐缩小乃至消除落叶阔叶植物和常绿阔叶植物在谱系多样性方面的固有差距。一方面,人类干扰的增强,可能通过促进竞争释放等,提供更多林内空间和资源(例如光照和土壤养分),更有利于生态策略较激进和多样的落叶阔叶植物(Givnish, 2002; 车俭等,2020),而常绿阔叶植物由于生态策略较为保守,对高资源的利用效率较低(Givnish, 2002),可能导致了其对人类干扰的不敏感。另一方面,本研究也证实了普定喀斯特次生林内的落叶阔叶植物和常绿阔叶植物谱系beta多样性受到不同因素的驱动。其中,驱动落叶阔叶植物谱系beta多样性的人类活动、基岩类型和坡位这3个因素,均与光照和土壤等环境条件存在密切关联(Fu et al., 2019; 郑鸾和龙翠玲,2020),这一结果与车俭等(2020)发现亚热带常绿阔叶林内落叶阔叶植物谱系beta多样性受到气温限制相一致,表明环境条件所介导的生境过滤等生态位过程对亚热带地区森林内落叶阔叶植物谱系beta多样性分布可能发挥着广泛的调控作用。常绿阔叶植物谱系beta多样性则随地理距离增大而上升,表明扩散限制等空间过程可能在驱动常绿阔叶植物谱系beta多样性的分布格局上发挥着重要作用(Myers et al., 2013)。但是,本研究并未发现人类活动和环境因素对普定喀斯特次生林常绿阔叶植物谱系beta多样性有显著影响,部分原因可能是由于常绿阔叶植物的资源利用策略通常较为保守(Givnish, 2002),对低资源环境的耐受能力较强,而对高资源环境的资源利用效率较低,导致其对喀斯特森林生境异质性的响应不明显。

综上所述,本研究在位于西南喀斯特核心地带的贵州省普定县喀斯特次生林内的发现,表明环境条件和人类活动共同调控着喀斯特次生林内落叶和常绿阔叶木本被子植物比例。但是,两类植物谱系多样性的驱动因素存在区别。其中,落叶阔叶植物谱系多样性受制于地形和基岩类型等环境因素所介导的生境过滤等生态位过程作用;而常绿阔叶植物谱系多样性则受到地理距离所介导的扩散限制等空间过程的影响。

参考文献:

AXELROD DI, 1966. Origin of deciduous and evergreen habits in temperate forests  [J]. Evolution, 20(1): 1-15.

BAI KD, MO L, LIU M, et al., 2015. Nutrient resorption patterns of evergreen and deciduous tree species at different altitudes on Maoer Mountain, Guangxi  [J]. Acta Ecol Sin, 35(17): 5776-5787.  [白坤栋, 莫凌, 刘铭, 等, 2015. 广西猫儿山不同海拔常绿和落叶树种的营养再吸收模式 [J]. 生态学报, 35(17): 5776-5787.]

BARTOAN'G1 K, 2019. MuMIn: multi-model inference. R package version 1.43. 15  [EB/OL]. https: ://CRAN.R-project.org/package=MuMIn.

BEWS JW, 1927. Studies in the ecological evolution of the angiosperms  [J]. New Phytol, 26(3): 129-148.

CAYUELA L, CERDA GL, ALBUQUERQUE FS, et al., 2012. Taxonstand: An R package for species names standardisation in vegetation databases  [J]. Methods Ecol Evol, 3(6): 1078-1083.

CHE J, ZHENG J, JIANG Y, et al., 2020. Separation of phylogeny and ecological behaviors between evergreen and deciduous woody angiosperms in the subtropical forest dynamics plots of China  [J]. Chin J Plant Ecol, 44(10): 1007-1014.  [车俭, 郑洁, 蒋娅,  2020, 等. 中国亚热带森林动态监测样地常绿和落叶木本被子植物谱系结构及生态习性差异 [J]. 植物生态学报, 44(10): 1007-1014.]

COTTLE R, 2004. Linking geology and biodiversity. external relations team  [R]. English Nature Report, 562: 11-12.

FANG XF, SHEN GC, YANG QS, et al., 2016. Habitat heterogeneity explains mosaics of evergreen and deciduous trees at local-scales in a subtropical evergreen broad-leaved forest  [J]. J Veg Sci, 28(2): 379-388.

FAYOLLE A, ENGELBRECHT B, FREYCON V, et al., 2012. Geological substrates shape tree species and trait distributions in African moist forests  [J]. PLoS ONE, 7(8): e42381.

FENG G, SVENNING JC, MI XC, et al., 2014. Anthropogenic disturbance shapes phylogenetic and functional tree community structure in a subtropical forest  [J]. For Ecol Manag, 313: 188-198.

FU PL, ZHU SD, ZHANG JL, et al., 2019. The contrasting leaf functional traits between a karst forest and a nearby non-karst forest in south-west China  [J]. Funct Plant Biol, 46(10): 907-915.

FULLER JL, FOSTER DR, MCLACHLAN JS, et al., 1998. Impact of human activity on regional forest composition and dynamics in central New England  [J]. Ecosystems, 1(1): 76-95.

GIVNISH TJ, 2002. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox  [J]. Silv Fenn, 36(3): 703-743.

GOSLEE SC, URBAN DL, 2007. The ecodist package for dissimilarity-based analysis of ecological data  [J]. J Stat Softw, 22(7): 1-19.

GUO K, LIU CC, DONG M, 2011. Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China  [J]. Chin J Plant Ecol, 35(10): 991-999.  [郭柯, 劉长成, 董鸣, 2011. 我国西南喀斯特植物生态适应性与石漠化治理 [J]. 植物生态学报, 35(10): 991-999.]

HE ZQ, LIU CC, CAI XL, et al., 2021. Types and community characteristics of karst mixed evergreen and deciduous broad-leaved forests in the central Guizhou Plateau, China  [J]. Chin J Plant Ecol, 45(6): 670-680.  [贺忠权, 刘长成, 蔡先立, 等, 2021. 黔中高原喀斯特常绿与落叶阔叶混交林类型及群落特征 [J]. 植物生态学报, 45(6): 670-680.]

HUANG QL, 1984. Soil characteristics of marl development and its location in production and classification  [J]. Soil Fert, 21(3): 25-27.  [黄琼玲, 1984. 泥灰岩发育的土壤特征及其在生产和分类中的位置 [J]. 土壤肥料, 21(3): 25-27.]

JIANG Y, CHEN XB, MA JM, et al., 2016. Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broadleaved mixed forests in karst topography, Guilin, Southwest China  [J]. Trop Conserv Sci, 9(4): 1-9.

JIN Y, QIAN H, 2022. V. PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants  [J]. Plant Divers, 44(4): 335-339.

JIN Y, RUSSO SE, YU MJ, 2018. Effects of light and topography on regeneration and coexistence of evergreen and deciduous tree species in a Chinese subtropical forest  [J]. J Ecol, 106(4): 1634-1645.

LAN SA, SONG M, ZENG FP, et al., 2016. Species composition of woody plants in evergreen-deciduous broad-leaved karst forests, southwest China  [J]. Guihaia, 36(10): 1156-1164.  [兰斯安, 宋敏, 曾馥平, 等, 2016. 喀斯特常绿落叶阔叶混交林木本植物组成特征 [J]. 广西植物, 36(10): 1156-1164.]

LEGENDRE P, MI XC, REN HB, et al., 2009. Partitioning beta diversity in a subtropical broad-leaved forest of China  [J]. Ecology, 90(3): 663-674.

LI J, ZHANG LJ, LI YF, 2022. Exposed rock reduces tree size, but not diversity  [J]. Front Plant Sci, 13: 851781.

LI TT, RONG L, WANG MJ, et al., 2021. Dynamics of phytoecommunity structure of karst secondary forest in Central Guizhou  [J]. Guihaia, 41(5): 684-694.  [李婷婷, 容丽, 王梦洁, 等, 2021. 黔中喀斯特次生林群落结构动态 [J]. 广西植物, 41(5): 684-694.]

LIN HL, LIANG SC, YAO YP, et al., 2021. Species composition and environmental analysis of deciduous broad-leaved forests in karst hills of Guilin  [J]. Guihaia, 41(5): 758-768.  [林紅玲, 梁士楚, 姚义鹏, 等, 2021. 桂林岩溶石山落叶阔叶林种类组成及其环境解释 [J]. 广西植物, 41(5):  758-768.]

LIU CC, QIAO XG, WANG Z, et al., 2019. Distinct taxonomic and phylogenetic patterns of plant communities on acid and limestone soils in subtropical and tropical China  [J]. J Veg Sci, 31(1): 194-207.

LIU CC, WANG B, GUO K, et al., 2021. Karst vegetation classification system of China  [J]. Guihaia, 41(10): 1618-1631.  [刘长成, 王斌, 郭柯, 等, 2021. 中国喀斯特植被分类系统 [J]. 广西植物, 41(10): 1618-1631.]

MAECHLER M, ROUSSEEUW P, STRUYF A, et al., 2022. cluster: Cluster analysis basics and extensions. R package version 2.1.4.  [EB/OL]. https://CRAN.R-project.org/package=cluster.

MANGIAFICO S, 2022. rcompanion: Functions to support extension education program evaluation.R package version, 2.4.15.  [EB/OL]. http://rcompanion.org/.

MCMICHAEL CN, MATTHEWS-BIRD F, FARFAN-RIOS W, et al., 2017. Ancient human disturbances may be skewing our understanding of Amazonian forests  [J]. PNAS, 114(3): 522-527.

MIURA M, MANABE T, NISHIMURA N, et al., 2001. Forest canopy and community dynamics in a temperate old-growth evergreen broad-leaved forest, south-western Japan: A 7-year study of a 4-ha plot  [J]. J Ecol, 89(5): 841-849.

MONK CD, 1966. An ecological significance of evergreenness [J]. Ecology, 47(3): 504-505.

MYERS JA, CHASE JM, JIMENEZ I, et al., 2013. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly  [J]. Ecol Lett, 16(2): 151-157.

PADGHAM M, SUMNER MD, 2020. geodist: Fast, dependency-free geodesic distance calculations. R package version 0.0.4.  [EB/OL]. https://CRAN.R-project.org/package=geodist.

PARADIS E, SCHLIEP K, 2019. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R  [J]. Bioinformatics, 35(3): 526-528.

PAUSAS JG, CARRERAS J, 1995. The effect of bedrock type, temperature and moisture on species richness of Pyrenean Scots pine (Pinus sylvestris L.) forests  [J]. Vegetatio, 116(1): 85-92.

R Core Team, 2019. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria  [EB/OL]. https://www.R-project.org/.

REVELL LJ, 2012. phytools: An R package for phylogenetic comparative biology(and other things)  [J]. Method Ecol Evol, 3(2): 217-223.

SHI W, WANG YQ, XIANG WS, et al., 2021. Environmental filtering and dispersal limitation jointly shaped the taxonomic and phylogenetic beta diversity of natural forests in southern China  [J]. Ecol Evol, 11(13): 8783-8794.

SUN QT, MIAO BS, 1991. The type of marlitic karst fissure and its water-rich property  [J]. J Shandong Norm Univ (Nat Sci Ed), 6(1): 69-73.  [孫启堂, 苗本胜, 1991. 泥灰岩岩溶裂隙类型及其富水性 [J]. 山东师大学报(自然科学版), 6(1): 69-73.]

SWENSON NG, 2014. Functional and phylogenetic ecology in R (Vol. 639)  [M]. New York: Springer, Int Stat Rev: 1-201.

TANG CQ, OHSAWA M, 2002. Coexistence mechanisms of evergreen, deciduous and coniferous trees in a mid-montane mixed forest on Mt. Emei, Sichuan, China  [J]. Plant Ecol, 161(2): 215-230.

TOUER DD, GE JW, 2014. Plant species richness responses to the interactions between karst environmental factors, southwest China  [J]. Am J Res Commun, 2(5): 28-48.

TU YL, 1989. Preliminary study on karst forests in Guizhou  [J]. Carsol Sin, 8(4): 282-290.  [屠玉鳞, 1989. 贵州喀斯特森林的初步研究 [J]. 中国岩溶, 8(4): 282-290.]

WANG LH, YANG JX, CAO CP, 2020. Phylogenetic structure of karst forest in Maolan National Nature Reserve, Guizhou Province, China  [J]. J Mount Sci, 2020, 38(2): 201-209.  [王雷宏, 杨俊仙, 曹翠萍, 2020. 茂兰国家自然保护区喀斯特森林系统发育结构 [J]. 山地学报, 38(2): 201-209.]

WEBB CO, ACKERLY DD, KEMBEL SW, 2008. Phylocom: software for the analysis of phylogenetic community structure and trait evolution  [J]. Bioinformatics, 24(18): 2098-2100.

WU ZY, 1980. Vegetation of China  [M]. Beijing: Science Press.  [吴征镒, 1980. 中国植被 [M]. 北京: 科学出版社.]

XIE B, YANG YG, 1998. Relationship between ecological environmental fragility and human activities in karst mountain areas of Guizhou Province — A case study at Xifeng County  [J]. Bull Soil Water Conserv, 18(4): 12-16.  [谢标, 杨永岗, 1998. 贵州省岩溶山区生态环境脆弱性及人为活动的影响—以息烽县为例 [J]. 水土保持通报, 18(4): 12-16.]

YANG QC, ZHANG HH, WANG LH, et al., 2021. Topography and soil content contribute to plant community composition and structure in subtropical evergreen-deciduous broadleaved mixed forests  [J]. Plant Divers, 43(4): 264-274.

YAO CH, JIANG ZC, YUAN DX, 2001. Vegetation karst effects on the karst area of southwest China  [J]. Acta Geo Sin, 22(2): 159-164.  [姚長宏, 蒋忠诚, 袁道先, 2001. 西南岩溶地区植被喀斯特效应 [J]. 地球学报, 22(2): 159-164.]

YU LF, ZHU SQ, YE JZ, et al., 2002. Evaluation on degradation of karst forest community and human disturbance [J]. J Appl Ecol, 13(5): 529-532.  [喻理飞, 朱守谦, 叶镜中, 等, 2002. 人为干扰与喀斯特森林群落退化及评价研究 [J]. 应用生态学报, 13(5): 529-532.]

ZHANG X, 2007. Astudy on forest structure and function patterns in natural restoration process from karst and non-karst rock groupsin Guizhou Provincial central mountainous area, China [D]. Nanjing: Nanjing Forestry University.  [张喜, 2007. 黔中山地喀斯特和非喀斯特岩组退化森林结构与功能规律研究 [D]. 南京: 南京林业大学.]

ZHAO D, LIN CH, HE TB, 2006. The influence of human activity to the rocky desertification of Guizhou karst mountainous district and the countermeasure  [J]. Guizhou Sci, 24(4): 49-53.  [赵东, 林昌虎, 何腾兵, 2006. 人类活动对贵州喀斯特山区石漠化的影响以及对策 [J]. 贵州科学, 24(4): 49-53.]

ZHENG L, LONG CL, 2020. Differences of plant diversity and soil physicochemical properties in Maolan karst forest under different topographic conditions  [J]. Guihaia, 40(6): 792-801.  [郑鸾, 龙翠玲, 2020. 茂兰喀斯特森林不同地形植物多样性与土壤理化特征研究 [J]. 广西植物, 40(6): 792-801.]

ZHOU YY, LI SS, HUANG TF, 2003. Features of karst forest ecosystem in China and its conservation in utilisation — A case study on Maolan  Mulun  Nonggang typical karst forests in southwest China  [J]. J Guangxi Norm Coll (Nat Sci Ed), 20(3): 1-7.  [周游游, 黎树式, 黄天放, 2003. 我国喀斯特森林生态系统的特征及其保护利用——以西南地区茂兰、木论、弄岗典型喀斯特森林区为例 [J]. 广西师范学院学报(自然科学版), 20(3): 1-7.]

ZHU SQ, 1997. Ecologicalresearch on karst forestⅡ  [M]. Guiyang: Guizhou Science and Technology Press: 5-6.  [朱守谦, 1997. 喀斯特森林生态研究二 [M]. 贵阳: 贵州科技出版社: 5-6.]

(责任编辑 李 莉 王登惠)

收稿日期:  2023-02-04

基金项目:  贵州省科学技术基金(黔科合基础 [2020]1Z013);国家自然科学基金委员会-贵州省人民政府喀斯特科学研究中心项目(U1812401)。

第一作者: 毛艳娇(1998-),硕士研究生,主要从事植物功能性状研究,(E-mail)1242545360@qq.com。

通信作者:  金毅,博士,副教授,主要从事群落生态学、生物地理学、宏生态学等研究,(E-mail)codon@126.com。

猜你喜欢

次生林喀斯特谱系
神族谱系
百年大党精神谱系的赓续与文化自信
王锡良陶瓷世家谱系
大自然的鬼斧神工:“中国南方喀斯特”
“别有洞天”的喀斯特王国
喀斯特
————水溶蚀岩石的奇观
浅论北方次生林培育技术要点
再论东周时期铜簠的谱系和源流
次生林冠下红松更新对光环境适应的研究进展
阜新地区天然次生林食叶害虫无公害防治应用