牦牛乳制品加工过程中稳定碳、氮同位素分馏效应
2023-05-17李继荣刘鑫王君曹晓钢次顿
李继荣,刘鑫,2,王君,曹晓钢,次顿
牦牛乳制品加工过程中稳定碳、氮同位素分馏效应
1西藏自治区农牧科学院农业质量标准与检测研究所/农业农村部农产品质量监督检验测试中心(拉萨),拉萨 850032;2西藏农牧学院食品科学学院,西藏林芝 860000;3拉萨海关技术中心,拉萨 850002
【背景】稳定同位素指纹图谱技术已广泛应用于乳制品产地溯源研究中,但多集中于产品与原料乳稳定同位素间差异比较。乳制品加工过程中稳定同位素是否存在分馏效应,稳定碳、氮同位素能否用于牦牛乳制品的产地溯源尚不清楚。【目的】以牦牛酸奶、牦牛奶渣为研究对象,明确牦牛乳制品加工过程中各关键点样品稳定碳、氮同位素变化,分馏系数及相关性,探究不同产地牦牛乳制品稳定碳、氮同位素特征,为牦牛乳制品产地溯源提供理论与技术支撑。【方法】从西藏自治区那曲市聂荣县、嘉黎县采集酸奶加工过程(牦牛乳、煮沸5 min牦牛乳、加菌种后、40℃发酵6 h、酸奶成品)5个关键取样点对应样品和奶渣加工过程(牦牛乳、脱脂牦牛乳、煮沸10 h脱脂牦牛乳和奶渣成品)4个关键取样点对应样品共计196份。利用元素分析—同位素比率质谱仪(EA-IRMS)测定稳定碳、氮同位素比率。结合单因素方差分析,比较稳定碳、氮同位素在酸奶、奶渣加工关键采样点间的差异;酸奶、奶渣加工过程中关键采样点样品稳定碳、氮同位素的相关性进行皮尔逊相关分析;两因素方差分析比较不同产地酸奶与牦牛乳、奶渣与牦牛乳稳定碳、氮同位素差异。【结果】酸奶加工过程中存在δ13C、δ15N分馏,δ13C牦牛乳>δ13C40℃发酵6 h、牦牛酸奶>δ13C添加菌种后样品,分馏系数介于0.9996—1.0009,Δ牦牛乳-牦牛酸奶为0.48‰;δ15N煮沸5 min牦牛乳、40 ℃发酵6 h、牦牛酸奶>δ15N牦牛乳,分馏系数介于0.9993—1,Δ牦牛乳-牦牛酸奶为-0.61‰;部分关键取样点间稳定碳、氮同位素存在显著相关性。奶渣加工过程中,δ13C牦牛乳、煮沸10 h脱脂牦牛乳、奶渣>δ13C脱脂牦牛乳,分馏系数介于0.9995—1.0005,Δ牦牛乳-牦牛奶渣为0,部分关键点样品间δ13C存在显著负相关;各关键点样品δ15N无显著差异,分馏值均为0。不同产地乳制品稳定碳、氮同位素差异极显著,聂荣县较嘉黎县牦牛乳制品δ13C、δ15N富集。【结论】牦牛乳制品加工过程中δ13C、δ15N存在分馏,添加菌种、发酵、离心脱脂过程导致δ13C比值不同,加热使样品δ13C、δ15N发生变化。虽然牦牛乳制品加工过程中发生稳定同位素分馏,但与产地相比,加工过程的影响较小,稳定碳、氮同位素可应用于牦牛乳制品产地溯源。
牦牛乳;酸奶;奶渣;牦牛乳制品;稳定碳同位素;稳定氮同位素
0 引言
【研究意义】作为藏族人民最喜爱的食物之一,牦牛乳富含蛋白质、脂肪、糖类等多种营养素,具备开发高品质乳制品的潜力[1]。目前常见的牦牛乳制品包括酸奶、奶渣及酥油等[2]。牦牛酸奶在降低LDL胆固醇、增进骨骼健康及抗动脉粥样硬化等方面发挥着重要作用[3]。牦牛奶渣又名曲拉,是将牦牛乳经煮沸脱脂后自然发酵、风干,不加凝乳酶、不经成熟直接食用的酸凝型硬质奶酪[4],具有较好的抗氧化活性[5]。食品产地溯源技术是有效实施食品原产地追溯、保护名优特产品的重要技术手段[6]。稳定同位素是用于乳制品产地溯源的有效指标[7-9]。稳定同位素分馏指同位素比值不同的两种物质之间发生的同位素分配[10]。研究牦牛乳制品加工过程中稳定同位素的组成特征与分馏,可为牦牛乳及制品产地溯源提供理论和技术支撑。【前人研究进展】稳定同位素指纹图谱技术已广泛应用于乳制品产地溯源中,主要应用于牛奶[11-12]、奶酪[7-8]、黄油[13]、婴幼儿配方奶粉[14]等产地溯源及真伪辨别。常用的测定指标有δ13C、δ15N、δD、δ18O、δ34S和86Sr/88Sr等[15-16]。JIN等[15]使用δ13C、δ15N、δD、δ18O对鲜牛奶与复原乳进行辨别,辨别率达94.9%。ZHAO等[11]对中国(河北、宁夏、陕西、内蒙古、江苏)牛奶产地溯源研究发现,利用δ13C、δ15N、δD、δ18O可以对间距0.7 km以上奶牛场产牛奶进行区分。有关加工过程中稳定同位素分馏研究较少,主要集中在酒类[17-19]、茶叶[20-23]、谷物[24-27]、肉类[28-30]、油类[31]、牛奶[32]等产品。SCAMPICCHIO等[33]研究巴氏灭菌和超高温灭菌对牛奶稳定同位素的影响,结果显示加热使碳、氮同位素偏富。MASUD等[34]有关牛奶不同成分及乙醇稳定同位素组成特征的研究时发现,发酵使乙醇较乳糖稳定碳同位素富集。ALTIERI等[7]有关马苏里拉奶酪生产过程中稳定同位素分馏结果显示,马苏里拉奶酪与原乳间稳定碳、氮同位素无显著差异。【本研究切入点】利用稳定同位素指纹图谱技术对乳制品产地溯源的研究,多集中于产品与原料乳稳定同位素间差异比较,乳制品加工过程中各个关键点如何影响产品最终稳定同位素,其间是否存在分馏,进而应用于牦牛乳及其制品产地溯源尚不清楚,牦牛酸奶、牦牛奶渣加工过程中稳定碳、氮同位素变化规律也未见报道。【拟解决的关键问题】研究牦牛酸奶、牦牛奶渣加工过程中不同关键点样品稳定碳、氮同位素差异、分馏系数及相关性,探究应用稳定碳、氮同位素分析技术进行牦牛乳及其制品产地溯源的可行性,为牦牛乳及其制品的产地溯源提供理论参考。
1 材料与方法
试验于2021年在西藏自治区那曲市聂荣嘎确生态畜牧业发展有限责任公司和嘉黎县娘亚牦牛养殖产业发展有限责任公司进行。
1.1 乳制品加工工艺
1.1.1 酸奶加工工艺 挤出的新鲜牦牛乳经纱布过滤除杂得到酸奶加工牦牛乳原料,煮沸5 min对材料进行杀菌,杀菌晾凉后的样品加入前1 d的老酸奶作为菌种,添加菌种后样品40℃发酵6 h,4—6℃冷藏6 h制得酸奶成品。
1.1.2 奶渣加工工艺 挤出的新鲜牦牛乳经纱布过滤除杂得到奶渣加工牦牛乳原料,40 L牛奶分离机中脱脂得脱脂牦牛乳,煮沸10 h脱脂牦牛乳进行杀菌及蒸干水分,塑形晾晒得到奶渣成品。
1.2 试验材料
2021年8—9月从西藏自治区那曲市聂荣嘎确生态畜牧业发展有限责任公司采集酸奶加工过程(牦牛乳、煮沸5 min牦牛乳、加菌种后、40℃发酵6 h、酸奶成品)5个关键取样点对应样品和奶渣加工过程(牦牛乳、脱脂牦牛乳、煮沸10 h脱脂牦牛乳和奶渣成品)4个关键取样点对应样品共计150份,其中牦牛乳样品20份,对应煮沸5 min牦牛乳样品、加菌种后样品、40℃发酵6 h样品、酸奶成品各19份,对应脱脂牦牛乳、煮沸10 h脱脂牦牛乳和奶渣成品各18份;2021年9—10月从西藏自治区那曲市嘉黎县娘亚牦牛养殖产业发展有限责任公司采集样品46份,其中牦牛乳18份,牦牛酸奶18份,奶渣成品10份(表1)。牦牛乳采自当日酸奶、奶渣生产所用除杂后牦牛乳混样,酸奶、奶渣加工关键点取样为同一天、同一牦牛乳原料。
表1 采样点信息表
1.3 试验方法
1.3.1 样品前处理 取25 mL样品置于90 mm无菌培养皿中,为避免样品间污染,使用封口膜封口并用牙签戳孔,冷冻干燥72 h至恒重,干燥后样品包装于直径12.5 mm的定量滤纸,将滤纸包好的样品置于250 mL索氏提取器中,使用三氯甲烷﹕甲醇(2﹕1)有机溶剂60℃脱脂6 h,脱脂后的样品冷冻干燥24 h至恒重,脱脂干燥后的样品使用Tissuelyser-192型多样品组织研磨仪研磨,过100目筛,处理好的样品存于2 mL离心管中备用。
1.3.2 样品测定 使用十万分之一天平称取0.4 mg样品放入锡杯中包样。元素分析仪:Flash EA2000型串联稳定同位素比率质谱仪:Delta V Advantage Isotope Ratio MS进行稳定碳、氮同位素检测。使用标准品为IAEA-600,仪器对δ13C和δ15N的连续测定精度分别小于±0.1‰、±0.2‰。
稳定同位素比值表示样品与标准品之间偏差的千分数:
δ(‰)=[(sample/standard-1)]×1000
式中,:C或N;=C/C或N/N;sample:被测样品的同位素丰度比;standard:标准品的同位素丰度比。
乳制品加工各关键点分馏系数计算公式如下:
αA-B=A/B
式中,αA-B:A样品与B样品间同位素分馏系数;=C/C或N/N;A、B:乳制品加工关键点样品名称。A、B样品间的分馏值为ΔA-B=δA-δB。
1.4 数据处理及质量控制
使用软件Excel 2019对数据进行整理,SPSS 26对数据进行统计分析,使用单因素方差分析比较稳定碳、氮同位素在酸奶、奶渣加工关键采样点间的差异,统计检验前,用Kolmogorov-Smirnov和Levene统计量分别检验所有数据的正态性和方差同质性,满足方差齐性时采用LSD多重比较,不满足方差齐性时采用Games-Howell多重比较法进行分析;皮尔逊相关分析检测酸奶、奶渣加工过程中关键采样点样品稳定碳、氮同位素的相关性;线性回归分析构建酸奶、奶渣加工过程中关键采样点样品稳定碳、氮同位素的线性方程;两因素方差分析比较不同产地(聂荣县和嘉黎县)牦牛乳与酸奶、牦牛乳与奶渣稳定碳、氮同位素差异。使用Origin 2021作图。
2 结果
2.1 酸奶加工过程中稳定碳、氮同位素特征变化
酸奶加工过程中,牦牛乳原料δ13C平均值为-25.2‰,煮沸5 min牦牛乳δ13C平均值为-25.9‰,添加菌种后样品δ13C平均值为-26.0‰,40℃发酵6 h样品δ13C平均值为-25.6‰,酸奶成品δ13C平均值为-25.7‰(图1)。单因素方差分析结果显示,酸奶加工过程中稳定碳同位素差异极显著((4, 90)=11.417,<0.01),δ13C牦牛乳>δ13C40℃发酵6 h、酸奶>δ13C添加菌种后样品,δ13C煮沸5 min牦牛乳与δ13C添加菌种后样品、δ13C酸奶无显著差异,δ13C40℃发酵6 h与δ13C酸奶无显著差异(表2)。牦牛乳δ13C与煮沸5 min牦牛乳δ13C分馏值介于-0.1‰—1.7‰,牦牛乳δ13C较煮沸5 min牦牛乳δ13C富集0.72‰,分馏系数为1.0007;牦牛乳δ13C与添加菌种后样品δ13C 分馏值介于0.2‰—1.8‰,牦牛乳δ13C较添加菌种后样品δ13C富集0.87‰,分馏系数为1.0009;牦牛乳δ13C与40℃发酵6 h样品δ13C分馏值介于-0.9‰—2.1‰,牦牛乳δ13C较40℃发酵6 h样品δ13C富集0.46‰,分馏系数为1.0005;牦牛乳δ13C与酸奶δ13C分馏值介于-0.9‰—1.9‰,牦牛乳δ13C较酸奶δ13C富集0.48‰,分馏系数为1.0005;添加菌种后样品δ13C较40 ℃发酵6 h样品δ13C、酸奶δ13C贫化,添加菌种后样品δ13C与40 ℃发酵6 h样品δ13C分馏值介于-1.6‰—1.2‰,添加菌种后样品δ13C较40 ℃发酵6 h样品δ13C贫化0.40‰,分馏系数为0.9996;添加菌种后样品δ13C与酸奶δ13C分馏值介于-1.6‰—0.4‰,添加菌种后样品δ13C较酸奶δ13C贫化0.39‰,分馏系数为0.9996。
不同大写字母表示差异极显著(P<0.01) Different capital letters indicate extremely significant difference (P<0.01)
酸奶加工过程中,牦牛乳原料δ15N平均值为4.2‰,煮沸5 min牦牛乳样品的δ15N平均值为4.7‰,添加菌种后样品δ15N平均值为4.5‰,40 ℃发酵6 h样品δ15N平均值4.9‰,酸奶成品δ15N平均值为4.8‰。单因素方差分析结果显示(图1),酸奶加工过程中稳定氮同位素差异极其显著((4, 90)= 3.736,<0.01),δ15N煮沸5 min牦牛乳、40 ℃发酵6 h、酸奶>δ15N牦牛乳,δ15N添加菌种后样品与δ15N牦牛乳、δ15N酸奶无显著差异,δ15N酸奶与δ15N煮沸5 min牦牛乳、δ15N添加菌种后样品、δ15N40℃发酵6 h样品无显著差异。牦牛乳原料δ15N较煮沸5 min牦牛乳δ15N、40 ℃发酵6 h样品δ15N、酸奶δ15N贫化(表2),牦牛乳原料δ15N与煮沸5 min牦牛乳δ15N分馏值介于-1.6‰—0.7‰,牦牛乳原料δ15N较煮沸5 min牦牛乳δ15N贫化0.51‰,分馏系数为0.9995;牦牛乳原料δ15N与40 ℃发酵6 h样品δ15N分馏值介于-1.6‰—1.3‰,牦牛乳原料δ15N较40 ℃发酵6 h样品δ15N贫化0.67‰,分馏系数为0.9993;牦牛乳原料δ15N与酸奶δ15N分馏值介于-1.7‰— 2.0‰,牦牛乳原料δ15N较酸奶δ15N贫化0.61‰,分馏系数为0.9994。
表2 牦牛酸奶加工过程中各成分间稳定碳、氮同位素分馏系数表
2.2 酸奶加工过程中稳定碳、氮同位素相关性分析
图2显示40 ℃发酵6 h样品δ13C与酸奶成品δ13C、煮沸5 min牦牛乳δ13C存在显著正关性(=0.551,<0.05;=0.47,<0.05),与牦牛乳样品δ13C存在显著负关性(=-0.532,<0.05)。
图3显示酸奶成品δ15N与煮沸5 min牦牛乳δ15N存在显著正相关(=0.523,<0.05),与添加菌种后样品δ15N、40 ℃发酵6 h样品δ15N存在极显著正相关(=0.74,<0.01;=0.639,<0.01);煮沸5 min牦牛乳δ15N与添加菌种后样品δ15N、40 ℃发酵6 h样品δ15N存在极显著正相关(=0.872,<0.01;=0.648,<0.01);添加菌种后样品δ15N与40 ℃发酵6 h样品存在极显著正相关性(=0.685,<0.01)。
2.3 奶渣加工过程中稳定碳、氮同位素变化
奶渣加工过程中牦牛乳原料δ13C平均值为-25.2‰,脱脂牦牛乳δ13C平均值为-25.7‰,煮沸10 h脱脂牦牛乳δ13C平均值为-25.2‰,奶渣成品δ13C平均值为-25.3‰。牦牛乳原料δ15N平均值为4.1‰,脱脂牦牛乳δ15N平均值为4.0‰,煮沸10 h脱脂牦牛乳δ15N平均值为4.4‰,奶渣成品δ15N平均值为4.6‰。单因素方差分析结果显示(图4),奶渣加工过程中样品δ13C差异显著((3, 68)=3.805,<0.05),δ13C牦牛乳、煮沸10 h脱脂牦牛乳、奶渣>δ13C脱脂牦牛乳,δ13C牦牛乳与δ13C煮沸10 h脱脂牦牛乳、δ13C奶渣无显著差异。脱脂牦牛乳δ13C 较牦牛乳原料δ13C、煮沸10 h脱脂牦牛乳δ13C、奶渣δ13C贫化(表3),脱脂牦牛乳δ13C与牦牛乳原料δ13C分馏值介于-3.2‰—1.1‰,牦牛乳δ13C较脱脂牦牛乳δ13C富集0.51‰,分馏系数为1.0005;脱脂牦牛乳δ13C与煮沸10 h脱脂牦牛乳δ13C分馏值介于-2.6‰— 0.9‰,脱脂牦牛乳δ13C较煮沸10 h脱脂牦牛乳δ13C贫化0.51‰,分馏系数为0.9995;脱脂牦牛乳δ13C与奶渣δ13C分馏值介于-3.0‰—0.5‰,脱脂牦牛乳δ13C较奶渣δ13C贫化0.46‰,分馏系数为0.9995。奶渣加工过程中δ15N无显著差异((3, 68)=2.492,=0.067)。
图2 酸奶加工过程中各关键取样点稳定碳同位素相关性
表3 牦牛奶渣加工过程中各成分间稳定碳、氮同位素分馏系数表
图3 酸奶加工过程中各关键取样点稳定氮同位素相关性
为了研究奶渣加工过程中牦牛乳原料、脱脂牦牛乳、煮沸10 h脱脂牦牛乳和奶渣成品稳定碳、氮同位素的关系,对数据采用Pearson相关分析。结果显示(图5),牦牛乳原料δ13C与脱脂牦牛乳δ13C、奶渣成品δ13C存在显著负关性(=-0.544,<0.05;=-0.549,<0.05),奶渣成品与煮沸10 h脱脂牦牛乳δ13C存在极其显著负关性(=-0.603,<0.01)。奶渣加工过程中各关键取样点样品δ15N无显著相关性。
2.4 聂荣和嘉黎县牦牛乳制品稳定同位素识别
聂荣县与嘉黎县产牦牛乳与酸奶两因素方差分析结果显示(图6),不同产地牦牛乳δ13C与酸奶δ13C间存在极其显著差异((3, 71)=6.308,<0.01),聂荣县与嘉黎县牦牛乳制品(牦牛乳、酸奶)δ13C差异极其显著((1, 74)=7.309,<0.01),牦牛乳与酸奶间δ13C存在显著差异((1, 74)=4.941,<0.05),且产地与乳制品的差异存在交互作用((1, 74)=5.9,<0.05)。聂荣县较嘉黎县乳制品(牦牛乳、酸奶)δ13C富集,分馏值为0.3‰,牦牛乳δ13C较酸奶δ13C富集,分馏值为0.2‰;聂荣县与嘉黎县牦牛乳制品(牦牛乳、酸奶)δ15N差异极其显著((1, 74)=85.382,<0.01),牦牛乳与酸奶间δ15N无显著差异((1, 74)=1.894,>0.05),聂荣县较嘉黎县牦牛乳制品(牦牛乳、酸奶)δ15N富集,分馏值为1.3‰。
不同小写字母表示差异显著(P<0.05) Different lowercase letters indicate significant difference (P<0.05)
图5 奶渣加工过程中稳定碳同位素相关性
聂荣县与嘉黎县产牦牛乳与奶渣两因素方差分析结果显示(图6),聂荣县与嘉黎县牦牛乳制品(牦牛乳、奶渣)δ13C差异极其显著((1, 65)=19.768,<0.01),牦牛乳与奶渣间δ13C无显著差异((1, 65)=0.834,>0.05)。聂荣县较嘉黎县乳制品(牦牛乳、奶渣)δ13C富集,分馏值为0.5‰;聂荣县与嘉黎县牦牛乳制品δ15N差异极其显著((1, 65)=42.727,<0.01),牦牛乳与奶渣间δ15N无显著差异((1, 65)=0.647,>0.05),聂荣县较嘉黎县牦牛乳制品(牦牛乳、奶渣)δ15N富集,分馏值为1.1‰。
图6 不同产地乳制品稳定碳、氮同位素
3 讨论
3.1 热加工对样品稳定碳、氮同位素的影响
美拉德反应是热加工食品发生的主要反应之一,温度越高,反应时间越长,美拉德反应进行的程度越大[35]。酸奶加工过程中,牦牛全乳煮沸5 min使样品δ13C贫化,δ15N富集;而奶渣加工过程中,脱脂牦牛乳煮沸10 h使样品δ13C富集,δ15N无显著差异。造成这一不同结论的原因可能是由于美拉德反应底物不同、加热时间不同,使所得产物不同。牦牛全乳煮沸5 min使样品δ15N富集,结果与FRASER等[36]碳化试验中加热使δ15N值富集的结论一致。
3.2 发酵对样品稳定碳、氮同位素的影响
原料乳中的蛋白质、脂肪和糖类在乳酸菌的作用下发酵形成不同种类的有机酸[37]。张倩等[18]有关酿酒粮食发酵蒸馏乙醇稳定碳同位素的变化研究得出,发酵粮食的种类、比例决定了发酵原材料的总δ13C,最终影响发酵乙醇δ13C。本研究得出酸奶加工过程中,发酵使样品δ13C逐渐富集,可能是由于发酵降低了牦牛奶中的乳糖含量[38],而乳糖发酵使乙醇δ13C较乳糖δ13C偏富集所致[34]。BOSTIC等[27]有关烘烤和发酵对谷物食品稳定碳、氮同位素比值影响的研究显示,面包发酵75 min,δ15N没有显著差异。这一结果与本研究中发酵未改变样品δ15N比值的结论一致。
3.3 脱脂对样品稳定碳同位素的影响
牦牛乳经牛奶脱脂机脱脂得到脱脂牦牛乳,牦牛乳与脱脂牦牛乳经冷冻干燥脱脂后得到奶渣加工关键点样品,脱出的脂质经冲洗、塑形可加工成酥油。BOSTIC等[32]发现脂肪含量与稳定碳同位素比值存在线性关系,牛奶干重中每增加8.75%脂肪含量,稳定碳同位素比值贫化0.33‰。脂质中δ13C较为贫化,样品脱脂可使δ13C富集。理论上,牦牛乳与脱脂牦牛乳经脱脂处理后,δ13C应无显著差异或牦牛乳δ13C较脱脂牦牛乳δ13C贫化,而本研究得出脱脂后的牦牛乳δ13C较再脱脂后脱脂牦牛乳δ13C富集,其原因可能是由于脱脂牦牛乳制备时除脱除脂质外,同时脱除部分蛋白质或糖类[39-40],最终导致脱脂牦牛乳δ13C富集。
3.4 奶渣加工过程中稳定碳、氮同位素分馏
奶渣又名曲拉,是将牦牛乳经煮沸脱脂后自然发酵、风干,不加凝乳酶、不经成熟直接食用的酸凝型硬质奶酪[4]。本研究中奶渣与牦牛乳间稳定碳、氮同位素分馏系数为1,与CAPICI等[41]有关奶酪与原乳间稳定碳、氮同位素未发生分馏结果一致。不同产地奶渣与牦牛乳稳定碳、氮同位素变化规律相同,说明牦牛乳稳定碳、氮同位素可以反映乳制品奶渣稳定同位素特征。
3.5 产地对样品稳定碳同位素的影响
牦牛乳制品稳定碳、氮同位素比值存在一定的地域性,不同产地牦牛乳稳定同位素比值差异主要由于牦牛所食食物稳定同位素比值差异所致[10,12]。C3植物δ13C介于-23‰—-38‰,C4植物δ13C介于-12‰— -14‰[10],西藏牦牛乳δ13C介于-26.3‰—-24.5‰,说明西藏牦牛主要以C3植物为主。虽然酸奶加工过程中稳定碳、氮同位素存在分馏现象,但产地间的稳定碳、氮同位素差异较加工过程所引起的稳定碳、氮同位素大。
4 结论
牦牛乳制品加工过程中δ13C、δ15N存在分馏,添加菌种、发酵、离心脱脂过程导致δ13C比值不同,加热使样品δ13C、δ15N发生变化。δ13C平均分馏值小于0.9‰,分馏系数介于0.9995—1.0009;δ15N平均分馏值小于0.7‰,分馏系数介于0.9993—1。虽然牦牛乳制品加工过程中发生稳定同位素分馏,但与产地相比,加工过程影响较小,稳定碳、氮同位素可应用于牦牛乳制品产地溯源。
[1] 代安娜, 杨具田, 丁波, 刘红娜. 牦牛乳组分及功能特性研究进展. 动物营养学报, 2022, 34(6): 3443-3453.
DAI A N, YANG J T, DING B, LIU H N. Research progress on components and functional characteristics of yak milk. Chinese Journal of Animal Nutrition, 2022, 34(6): 3443-3453. (in Chinese)
[2] 孙鹏飞. 牦牛乳开发利用现状及产业化发展建议. 中国畜牧业, 2021(15): 48.
SUN P F. Present situation of yak milk development and utilization and suggestions for industrialization development. China Animal Industry, 2021(15): 48. (in Chinese)
[3] 李双娇, 代安娜, 王慧, 王腾静, 丁波. 牦牛酸奶营养价值与健康功能的研究进展. 中国奶牛, 2021(6): 47-50.
LI S J, DAI A N, WANG H, WANG T J, DING B. Research progress on the nutritional value and health function of yak yogurt. China Dairy Cattle, 2021(6): 47-50. (in Chinese)
[4] 卢灏泽, 吕嘉伟, 杨帆, 张洋铭, 王妍凌, 陈璐, 张晶晶, 张凤杰, 薛洁, 薛蓓. 西藏牦牛奶酪的微生物群落结构与风味物质分析. 食品与发酵工业, 2023, 49(6): 179-185.
LU H Z, LÜ J W, YANG F, ZHANG Y M, WANG Y L, CHEN L, ZHANG J J, ZHANG F J, XUE J, XUE B. Microbial community structure and flavor analysis of Tibetan yak cheese. Food and Fermentation Industries, 2023, 49(6): 179-185. (in Chinese)
[5] 杨飞艳, 罗章, 谢司伟, 刘春爱, 黄文阳, 孙术国. 西藏不同海拔牦牛奶渣营养、风味特性及抗氧化活性研究. 食品工业科技, 2021, 42(11): 81-88.
YANG F Y, LUO Z, XIE S W, LIU C A, HUANG W Y, SUN S G. Study on nutrition, flavor characteristics and antioxidant activity of yak milk dregs at different elevations in Tibet. Science and Technology of Food Industry, 2021, 42(11): 81-88. (in Chinese)
[6] 马奕颜, 郭波莉, 魏益民, 赵海燕. 植物源性食品原产地溯源技术研究进展. 食品科学, 2014, 35(5): 246-250.
MA Y Y, GUO B L, WEI Y M, ZHAO H Y. An overview of analytical approaches for tracing the geographical origins of plant-derived foods. Food Science, 2014, 35(5): 246-250. (in Chinese)
[7] ALTIERI S, SAIANO K, BIONDI M, RICCI P, LUBRITTO C. Traceability of ‘Mozzarella di Bufala Campana’ production chain by means of carbon, nitrogen and oxygen stable isotope ratios. Journal of the Science of Food and Agriculture, 2020, 100(3): 995-1003.
[8] PIANEZZE S, BONTEMPO L, PERINI M, TONON A, ZILLER L, FRANCESCHI P, CAMIN F. δ34S for tracing the origin of cheese and detecting its authenticity. Journal of Mass Spectrometry, 2020, 55(7): e4451.
[9] PERINI M, THOMAS F, CABAÑERO ORTIZ A I, SIMONI M, CAMIN F. Stable isotope ratio analysis of lactose as a possible potential geographical tracer of milk. Food Control, 2022, 139: 109051.
[10] 郑永飞, 陈江峰. 稳定同位素地球化学. 北京: 科学出版社, 2000.
ZHENG Y F, CHEN J F. Isotopic Geochemistry. Beijing: Science Press, 2000. (in Chinese)
[11] ZHAO S S, ZHAO Y, ROGERS K M, CHEN G, CHEN A L, YANG S M. Application of multi-element (C, N, H, O) stable isotope ratio analysis for the traceability of milk samples from China. Food Chemistry, 2020, 310: 125826.
[12] O'SULLIVAN R, MONAHAN F J, BAHAR B, KIRWAN L, PIERCE K, O'SHEA A, MCELROY S, MALONE F, HANAFIN B, MOLLOY S, EVANS A C O, SCHMIDT O. Stable isotope profile (C, N, O, S) of Irish raw milk: baseline data for authentication. Food Control, 2021, 121: 107643.
[13] ROSSMANN A, HABERHAUER G, HÖLZL S, HORN P, PICHLMAYER F, VOERKELIUS S. The potential of multielement stable isotope analysis for regional origin assignment of butter. European Food Research and Technology, 2000, 211(1): 32-40.
[14] ZHOU X W, YAN Z, JIN B H, WU Y Y, XIE L Q, CHEN H Q, LIN G H, ZHAO Y, ROGERS K M, WU H. Origin verification of imported infant formula and fresh milk into China using stable isotope and elemental chemometrics. Food Control, 2021, 128: 108165.
[15] JIN B H, ZHOU X W, ROGERS K M, YI B Q, BIAN X H, YAN Z, CHEN H Q, ZHOU H C, XIE L Q, LIN G H, WU H. A stable isotope and chemometric framework to distinguish fresh milk from reconstituted milk powder and detect potential extraneous nitrogen additives. Journal of Food Composition and Analysis, 2022, 108: 104441.
[16] GREGORČIČ S H, OGRINC N, FREW R, NEČEMER M, STROJNIK L, ZULIANI T. The provenance of Slovenian milk using Sr-87/Sr-86isotope ratios. Foods, 2021, 10(8): 1729.
[17] 申雪, 聂晶, 李春霖, 邵圣枝, 黄翠, 张永志, 武运, 袁玉伟. 葡萄酒发酵前后稳定同位素特征变化及初步相关性分析. 核农学报, 2022, 36(3): 628-634.
SHEN X, NIE J, LI C L, SHAO S Z, HUANG C, ZHANG Y Z, WU Y, YUAN Y W. Changes in stable isotopic characteristics of wine after fermentation and preliminary correlation analysis. Journal of Nuclear Agricultural Sciences, 2022, 36(3): 628-634. (in Chinese)
[18] 张倩, 谢正敏, 安明哲, 叶华夏, 魏金萍, 黄箭. 酿酒粮食发酵蒸馏乙醇碳稳定同位素的变化. 酿酒科技, 2020(3): 47-51.
ZHANG Q, XIE Z M, AN M Z, YE H X, WEI J P, HUANG J. Changes of stable carbon isotopes of ethanol in the fermentation and distillation of liquor-making grains. Liquor-Making Science & Technology, 2020(3): 47-51. (in Chinese)
[19] 岳涛, 王道兵, 李安军, 姜利, 李国辉, 岳红卫, 张洛琪, 钟其顶. 白酒大生产过程中乙醇稳定碳同位素变化特征研究. 食品与发酵工业, 2023, 49(2): 63-67.
YUE T, WANG D B, LI A J, JIANG L, LI G H, YUE H W, ZHANG L Q, ZHONG Q D. Stable carbon isotopic variation in ethanol during Baijiu processing. Food and Fermentation Industries, 2023, 49(2): 63-67. (in Chinese)
[20] 刘志, 张永志, 周铁锋, 邵圣枝, 周莉, 袁玉伟. 不同烘干方式对茶叶中稳定同位素特征及其产地溯源的影响. 核农学报, 2018, 32(7): 1408-1416.
LIU Z, ZHANG Y Z, ZHOU T F, SHAO S Z, ZHOU L, YUAN Y W. Effects of different drying techniques on stable isotopic characteristics and traceability of tea. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1408-1416. (in Chinese)
[21] 邵圣枝, 聂晶, 刘志, 张永志, 王钫, Rogers K M, 袁玉伟. 茶叶加工与样品制备对同位素分馏和测定的影响. 核农学报, 2020, 34(1): 78-84.
SHAO S Z, NIE J, LIU Z, ZHANG Y Z, WANG F, ROGERS K M, YUAN Y W. Effects of tea processing and sample preparation on the determination of stable isotope ratio and its fractionation. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 78-84. (in Chinese)
[22] 张豫青, 李思敏, 池福敏, 李梁. 红茶加工过程中稳定同位素变化研究. 现代食品, 2021, 27(7): 217-220.
ZHANG Y Q, LI S M, CHI F M, LI L. Study on the change of stable isotope during the processing of black tea. Modern Food, 2021, 27(7): 217-220. (in Chinese)
[23] 刘宏艳, 麦颖晖, 刘毅, 郭欢, 夏宇, 杨志玲, 甘人友. 加工方式对木姜叶柯甜茶速溶粉稳定同位素指纹的影响. 核农学报, 2020, 34(S1): 21-27.
LIU H Y, MAI Y H, LIU Y, GUO H, XIA Y, YANG Z L, GAN R Y. Effects of processing on stable isotopic fingerprints of instant sweet tea [(Hance) Chun]. Journal of Nuclear Agricultural Sciences, 2020, 34(S): 21-27. (in Chinese)
[24] 李继荣, 张唐伟, 次仁德吉, 杨小俊, 次顿. 糌粑加工过程中稳定同位素指纹分馏效应分析. 中国农业科学, 2019, 52(24): 4592-4602. doi: 10.3864/j.issn.0578-1752.2019.24.013.
LI J R, ZHANG T W, CIREN D J, YANG X J, CI D. Fractionation effect of stable isotopic ratios in tsamba processing. Scientia Agricultura Sinica, 2019, 52(24): 4592-4602. doi: 10.3864/j.issn. 0578-1752.2019.24.013. (in Chinese)
[25] WADOOD S A, GUO B L, WEI Y M. Geographical traceability of wheat and its products using multielement light stable isotopes coupled with chemometrics. Journal of Mass Spectrometry: Journal of Mass Spectrometry, 2019, 54(2): 178-188.
[26] SUZUKI Y, NAKASHITA R, HUQUE R, KHATUN M A, OTHMAN Z B, SALIM N A B A, THANTAR S, CORAZON PABROA P, KONG P Y K, WADUGE V A, SRINUTTRAKUL W, HOSONUMA A, CHIKU K, YOSHIDA M. Effects of processing on stable isotope compositions (delta C-13, delta N-15, and delta O-18) of rice () and stable isotope analysis of asian rice samples for tracing their geographical origins. Jarq-Japan Agricultural Research Quarterly, 2020, 56(1): 95-103.
[27] BOSTIC J N, PALAFOX S J, ROTTMUELLER M E, JAHREN A H. Effect of baking and fermentation on the stable carbon and nitrogen isotope ratios of grain-based food. Rapid Communications in Mass Spectrometry, 2015, 29(10): 937-947.
[28] ROYER A, DAUX V, FOUREL F, LÉCUYER C. Carbon, nitrogen and oxygen isotope fractionation during food cooking: implications for the interpretation of the fossil human record. American Journal of Physical Anthropology, 2017, 163(4): 759-771.
[29] WANG Y C, CHANG Y J, WANG P L, SHIAO J C. Evaluation of cooking effects on otolith stable carbon and oxygen isotope values of teleostean fish(Cuvier, 1830). Rapid Communications in Mass Spectrometry, 2022, 36(4): e9233.
[30] ZHOU J Q, GUO B L, WEI Y M, ZHANG G Q, WEI S, MA Y Y. The effect of different cooking processes on stable C, N, and H isotopic compositions of beef. Food Chemistry, 2015, 182: 23-26.
[31] 王道兵, 岳红卫, 高冠勇, 宋立里, 武竹英, 王一路, 钟其顶, 张柏林. 花生油生产过程中稳定同位素变化规律及影响因素研究. 核农学报, 2020, 34(S1): 104-109.
WANG D B, YUE H W, GAO G Y, SONG L L, WU Z Y, WANG Y L, ZHONG Q D, ZHANG B L. Stable isotopic variation and influence factors in peanut oil during processing. Journal of Nuclear Agricultural Sciences, 2020, 34(S1): 104-109. (in Chinese)
[32] BOSTIC J N, HAGOPIAN W M, JAHREN A H. Carbon and nitrogen stable isotopes in U.S. milk: insight into production process. Rapid Communications in Mass Spectrometry, 2018, 32(7): 561-566.
[33] SCAMPICCHIO M, MIMMO T, CAPICI C, HUCK C, INNOCENTE N, DRUSCH S, CESCO S. Identification of milk origin and process- induced changes in milk by stable isotope ratio mass spectrometry. Journal of Agricultural and Food Chemistry, 2012, 60(45): 11268-11273.
[34] MASUD Z, VALLET C, MARTIN G J. Stable isotope characterization of milk components and whey ethanol. Journal of Agricultural and Food Chemistry, 1999, 47(11): 4693-4699.
[35] 赵新淮, 徐红华, 姜毓君. 食品蛋白质: 结构、性质与功能. 北京: 科学出版社, 2009.
ZHAO X H, XU H H, JIANG Y J. Food protein: Structure, properties and functions. Beijing: Science Press, 2009. (in Chinese)
[36] FRASER R A, BOGAARD A, CHARLES M, STYRING A K, WALLACE M, JONES G, DITCHFIELD P, HEATON T H E. Assessing natural variation and the effects of charring, burial and pre-treatment on the stable carbon and nitrogen isotope values of archaeobotanical cereals and pulses. Journal of Archaeological Science, 2013, 40(12): 4754-4766.
[37] 孟祥晨, 李艾黎, 焦月华. 乳酸菌食品加工技术. 北京: 科学出版社, 2019.
MENG X C, LI A L, JIAO Y H. Processing Technology of Lactic Acid Bacteria Food. Beijing: Science Press, 2019. (in Chinese)
[38] 李升升, 张燕, 赵立柱. 发酵和后熟对牦牛奶营养及风味物质的影响. 食品工业科技, 2022, 43(5): 114-120.
LI S S, ZHANG Y, ZHAO L Z. Effect of fermentation and post-fermentation on nutritional composition and volatile substances of yak milk. Science and Technology of Food Industry, 2022, 43(5): 114-120. (in Chinese)
[39] 喻峰, 熊华, 吕培蕾. 西藏牦牛酥油脂肪酸成分分析及功能特性评价. 中国油脂, 2006, 31(11): 35-38.
YU F, XIONG H, LÜ P L. Fatty acid composition and function evaluation of Tibet yak butter. China Oils and Fats, 2006, 31(11): 35-38. (in Chinese)
[40] SCHULZE E, DIOP H, BREVES G, GIESE W. Effect of energy-metabolism on c-13/c-12-ratios in milk-fat and lactose of cows. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 1992, 103(4): 913-916.
[41] CAPICI C, MIMMO T, KERSCHBAUMER L, CESCO S, SCAMPICCHIO M. Determination of cheese authenticity by carbon and nitrogen isotope analysis:cheese as a case study. Food Analytical Methods, 2015, 8(8): 2157-2162.
Fractionation Effect of Stable Carbon and Nitrogen Isotope Ratios in Yak Dairy Products Processing
1Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences/Supervision and Testing Center for Farm Products Quality, Ministry of Agriculture and Rural Affairs, Lhasa 850032;2Food Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi 860000, Tibet;3Lhasa Customs Technology Center, Lhasa 850002
【Background】Stable isotope fingerprinting technology has been widely adopted in the origin traceability study of dairy products. However, most of them are focused on comparing the differences between the stable isotopes of raw milk and milk products. Nevertheless, the fractionation effect of stable isotopes on dairy products processing and the application of stable carbon and nitrogen isotopes for origin tracing of yak dairy products are still unclear. 【Objective】In this study, yak yogurt and yak milk dregs were used as the study subjects to determine the changes in stable carbon and nitrogen isotope and the fractionation coefficients and correlations of yak dairy products at key points during processing, to investigate the stable carbon and nitrogen isotope characteristics of yak dairy products from different origins, so as to provide the theoretical and technical supports for origin traceability of yak dairy products. 【Method】A total of 196 samples were collected from the Nerong and Jiali counties of Nagqu City, Tibet Autonomous Region, obtain five key sampling points for yogurt processing (yak milk, yak milk boiled for 5 min, sample after strain addition, fermentation at 40 ℃ for 6 h, and yogurt) and four key sampling points for milk dregs processing (yak milk, skimmed yak milk, skimmed yak milk boiled for 10 h, and milk dregs). The stable carbon and nitrogen isotope ratios were determined using an elemental analysis isotope ratio mass spectrometer (EA-IRMS). The differences and correlations between the stable carbon and nitrogen isotopes at the key sampling points for yogurt and milk dregs processing were determined using one-way ANOVA comparative analysis and Pearson correlation analysis, respectively. Furthermore, the differences in stable carbon and nitrogen isotopes between yogurt and yak milk and milk dregs and yak milk with different origins were determined using a two-factor ANOVA. 【Result】The fractionation of stable carbon and nitrogen isotope during yogurt processing was as follows: δ13Cyak milk>δ13C40℃fermentation for 6 h, yak yogurt>δ13Csamples after adding strain, fractionation coefficient between 0.9996 and 1.0009,ΔYak milk-yak yogurtwas 0.48‰; δ15Nboiling 5 min yak milk, 40 ℃ fermentation for 6 h, yak yogurt>δ15Nyak milk, fractionation coefficient was between 0.9993 and 1, and ΔYak milk-yak yogurtwas -0.61‰. The correlations between the stable carbon and nitrogen isotopes at some key sampling points were significant. During milk dregs processing, δ13Cyak milk, boiled 10 h skimmed sample, yak milk dregs>δ13CSkimmed yak milk, fractionation coefficient was between 0.9995 and 1.0005, ΔYak milk-yak dregswas 0. A significantly negative correlation was observed in δ13C at some key sampling points, while no significant difference was observed in δ15N for each key point sample and the fractionation values were 0. The stable carbon and nitrogen isotopes of dairy products from different origins significantly differed, with δ13C and δ15N being enriched in yak dairy products from Nerong County compared to Jiali County. 【Conclusion】The fractionation of δ13C and δ15N was observed during yak dairy products processing. The addition of strains, fermentation, and centrifugal defatting processes resulted in different δ13C ratios, while heating induced changes in the sample δ13C and δ15N. Although stable isotope fractionation occurred during yak dairy products processing, its influence was less than the origin. Therefore, the stable carbon and nitrogen isotopes could be applied to trace the origin of yak dairy products.
yak milk; yogurt; milk dregs; yak dairy products; stable carbon isotope; stable nitrogen isotope
10.3864/j.issn.0578-1752.2023.10.013
2022-10-02;
2022-11-15
西藏自治区自然科学基金(XZ202101ZR0098G)、区域科技协同创新专项(QYXTZX-NQ2021-03,QYXTZX-NQ2022-01)
李继荣,Tel:18089980869;E-mail:ljr18697179656@163.com。通信作者次顿,Tel:13989086593;Fax:0891-6868491;E-mail:13989086593@163.com
(责任编辑 赵伶俐)