对流-扩散-反应方程界面问题的扩展杂交间断有限元
2023-04-29王慧媛陈豫眉
王慧媛 陈豫眉
本文针对2维和3维对流-扩散-反应方程的界面问题提出了一种基于非贴体网格的扩展杂交间断有限元方法.该方法在单元的内部分别用分片 k(k≥1)和m(m=k,k-1)次多项式逼近标量函数及其梯度,在单元边界上用 k 次多项式逼近标量函数的迹,在界面上则用界面单元内部的 k 次多项式在界面上的限制去逼近标量函数的迹.对于弱问题,本文利用 Lax-Milgram定理证明其解的存在唯一性.对于离散格式,本文给出了其解的存在唯一性以及能量范数下的最优误差估计.
对流-扩散-反应方程; 界面问题; 非贴体网格; 扩展杂交间断有限元
O241.82A2023.021003
收稿日期: 2022-04-07
基金项目: 国家自然科学基金(11971094)
作者简介: 王慧媛 (1997-), 女, 硕士研究生, 主要研究方向为偏微分方程数值解. E-mail: 3311484766@qq.com.
通讯作者: 陈豫眉. E-mail: xhshuxue@163.com
An extended HDG finite element for convection-diffusion-reaction equation interface problems
WANG Hui-Yuan1, CHEN Yu-Mei2
(1.School of Mathematics, Sichuan University, Chengdu 610064, China;
2.College of Mathematics Education, China West Normal University, Nanchong 637009, China)
This paper proposes an extended hybridizable discontinuous Galerkin (HDG) finite element for 2D and 3D convection-diffusion-reaction equation interface problems on body-unfitted meshes. This finite element uses piecewise polynomials of degrees k(k≥1)and m(m=k,k-1) to approximate the scalar function and its gradient respectively in the interior of elements, piecewise polynomials of degrees k to approximate the traces of the scalar function on the inter-element boundaries inside the sub-domains and constraints on the interface of piecewise polynomials of degrees k inside interface elements to approximate the traces of the scalar function on the interface. The existence and uniqueness of weak solution for the weak problem and discrete solution for the discrete scheme are proved respectively. Lax-Milgram theorem is used for the weak problem.The optimal error estimation is derived in the energy norm for the discrete scheme.
Convection-diffusion-reaction equation; Interface problem; Body-unfitted meshes; Extended HDG method
(2010 MSC 65M60)
6 結 论
本文针对对流-扩散-反应方程界面问题提出了一个任意阶的扩展杂交间断 Galerkin 有限元.在假设1.1和1.2成立的条件下,利用 Lax-Milgram 定理证明了弱解的存在唯一性.对离散格式,本文给出了解的存在唯一性结果及其在能量范数下的最优误差估计.
参考文献:
[1] Ames W F. Nonlinear partial differential equations in engineering [M]. New York: Academic Press, 1965.
[2] Murray J D. Nonlinear differential equation models in biology [M]. Oxford: Clarendon Press, 1977.
[3] Wang X, Posny D, Wang J. A reaction-convection-diffusion model for cholera spatial dynamics [J]. Discrete Cont Dyn-B, 2016, 21: 2785.
[4] Ribeiro M C, Rego L G C, DAjello P C T. Diffusion, reaction and forced convection in electrochemical cells [J]. J Electroanal Chem, 2009, 628: 21.
[5] Babuka I. The finite element method for elliptic equations with discontinuous coefficients [J]. Computing, 1970, 5: 207.
[6] 许进超. 具有间断系数的二阶椭圆型方程的有限元解的敛速估计[J]. 湘潭大学: 自然科学学报, 1982, 1: 84.
[7] Barrett J W, Elliott C M. Fitted and unfitted finite element methods for elliptic equations with smooth interfaces [J]. IMA J Numer Anal, 1987, 7: 283.
[8] Bramble J H, King J T. A finite element method for interface problems in domains with smooth boundaries and interfaces [J].Adv Comput Math, 1996, 6: 109.
[9] Cai Z, He C, Zhang S. Discontinuous finite element methods for interface problems: robust a priori and a posteriori error estimates [J]. SIAM J Numer Anal, 2017, 55: 400.
[10] Chen Z, Zou J. Finite element methods and their convergence for elliptic and parabolic interface problems [J]. Numer Math, 1998, 79: 175.
[11] Babuka I, Caloz G, Osborn J E. Special finite element methods for a class of second order elliptic problems with rough coefficients [J]. SIAM J Numer Anal, 1994, 31: 945.
[12] Strouboulis T, Babuka I, Copps K. The design and analysis of the generalized finite element method [J]. Comput Method Appl M, 2000, 181: 43.
[13] Abdelaziz Y, Hamouine A. A survey of the extended finite element [J]. Comput Struct,2008, 86: 1141.
[14] Fries T P, Belytschko T. The extended/generalized finite element method: an overview of the method and its applications [J]. Int J Numer Meth Eng, 2010, 84: 253.
[15] Wu H, Xiao Y. An unfitted hp-interface penalty finite element method for elliptic interface problems [J]. J Comput Math, 2019, 37: 316.
[16] Hansbo A, Hansbo P. An unfitted finite element method, based on Nitsches method, for elliptic interface problems [J]. Comput Method Appl M, 2002, 191: 5537.
[17] Han Y, Chen H, Wang X, et al. EXtended HDG methods for second order elliptic interface problems [J]. J Sci Comput, 2020, 84: 22.
[18] Han Y, Wang X, Xie X. An interface/boundary-unfitted eXtended HDG method for linear elasticity problems [EB/OL].[2022-02-07]. https://www.arxiv.org/pdf/2004.06275v2.pdf.
[19] Reusken A, Nguyen T H. Nitsches method for a transport problem in two-phase incompressible flows [J]. J Fourier Anal Appl, 2009, 15: 663.
[20] Lehrenfeld C, Reusken A. Nitsche-XFEM with streamline diffusion stabilization for a two-phase mass transport problem [J]. SIAM J Sci Comput, 2012, 34: A2740.
[21] Pietro D, Ern A, Guermond J L. Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection [J]. SIAM J Numer Anal, 2008, 46: 805.
[22] Cockburn B, Gopalakrishnan J, Lazarov R. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems [J]. SIAM J Numer Anal, 2009, 47: 1319.
[23] Cockburn B, Dong B, Guzmán J, et al. A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems [J]. SIAM J Sci Comput, 2009, 31: 3827.
[24] Qiu W, Shi K. An HDG method for convection diffusion equation [J]. J Sci Comput, 2016, 66: 346.
[25] Chen G, Feng M, Xie X. A robust WG finite element method for convection-diffusion-reaction equations [J]. J Comput Appl Math, 2017, 315: 107.
[26] Adams R A. Sobolev spaces [M]. New York: Academic Press, 1975.
[27] Brenner S C, Scott L R. The mathematical theory of finite element methods [M]. New York: Springer, 2008.