哈尔滨居仁砂砾石剖面沉积特征及其环境意义
2023-04-29冷宇坤谢远云康春国迟云平孙磊吴鹏魏振宇魏春艳
冷宇坤 谢远云 康春国 迟云平 孙磊 吴鹏 魏振宇 魏春艳
摘 要 前人将黑龙江宾县居仁镇的砂砾石层(居仁剖面)视为罗家窝棚组,成因类型为早更新世早期的冰碛物堆积。然而,居仁剖面和罗家窝棚组的研究极为薄弱,极大限制了该地层所记录的区域构造—地貌—气候—水系演化信息。选择居仁剖面为研究对象,对其沉积学、矿物学和元素地球化学特征进行研究。结果表明,居仁剖面砾石风化程度较低、分选差、磨圆较好、无定向性,砾石成分以陆源碎屑岩(43%)、花岗岩(28%)和石英质(26%)为主,凝灰岩和流纹岩少量出现。重矿物组成以绿帘石(42%)和锐钛矿(9.9%)占绝对优势,其次为白钛石(8.7%),重晶石(15.2%)、黄铁矿(14.5%)和萤石(11.3%)在个别样品中大量出现,其他重矿物含量较少。元素地球化学揭示了居仁剖面沉积物弱—中等的化学风化程度,大部分沉积物经历了首次循环以及其长英质的母岩属性。与罗家窝棚组标准地层的沉积学特征对比,沉积物的颜色、固结程度、沉积物结构、地层结构、沉积物成因类型以及地貌特征等都存在显著差异。因此,居仁剖面不是罗家窝棚组,成因类型为湖滨或河流入湖三角洲沉积。上述研究对于哈尔滨地区第四纪地层的划分和早更新世区域环境的重建有重要意义。
关键词 地球化学;化学风化;砾石;罗家窝棚组;居仁剖面
第一作者简介 冷宇坤,女,1998年出生,硕士,第四纪地质与环境变化,E-mail: 291197935@qq.com
通信作者 谢远云,男,博士,教授,E-mail: xyy0451@hrbnu.edu.cn
中图分类号 P531 文献标志码 A
0 引言
碎屑沉积物有揭示历史地质过程的巨大潜力,其沉积学、矿物学和地球化学特征为研究源区古风化作用[1-3]、源岩组成[4-5]、分选与再循环过程以及沉积环境等提供了重要信息[6-7]。传统的沉积学手段适用于沉积物的宏观特征研究,而地球化学方法更适用于细颗粒沉积物的微观特征研究,重矿物可以理解矿物组成对元素分布的控制,并能够很好地反映物源。因此,亟需整合沉积学、矿物学和地球化学等手段,以克服不同手段在重建物源和古沉积环境过程中的多解性和复杂性[8]。
哈尔滨是我国东北第四系发育典型地区,许多学者在此做过大量的第四纪地层、古生物以及考古等研究工作。其中对哈尔滨地区的上更新统(顾乡屯)和中更新统(上荒山组)的研究已经有半个多世纪的历史[9],但对哈尔滨地区的下更新统(罗家窝棚组、关家窝棚组、白土山组)研究较少,尤其是对罗家窝棚组的研究尚未涉及。居仁剖面是哈尔滨地区下更新统的典型剖面,为一套砂砾石层,前人对其的认识仅限于沉积学特征,缺乏矿物学和地球化学地层属性特征的认识。区域地质资料认为该地层属于下更新统的罗家窝棚组,其成因类型为早更新世早期的冰碛物堆积[9]。
本文在野外考察的基础上,利用沉积学、矿物学和地球化学特征对居仁剖面进行研究,对其化学风化程度、沉积再循环特征和母岩性质以及沉积环境进行讨论,最后分析了居仁剖面是否属于罗家窝棚组标准地层。这项工作对于哈尔滨地区第四纪地层的划分,早更新世区域环境的重建以及对构造—地貌—气候—水系演化信息的挖掘等有重要意义。
1 材料与方法
1.1 研究区概况
哈尔滨(44°04′~46°40′ N,125°42′~130°10′ E),位于松嫩平原东南缘,东邻张广才岭西麓。大地构造处于中生代松辽断陷盆地东南隆起区之北端,是我国东北第四系发育典型地区(距今约2.58 Ma)。居仁剖面位于哈尔滨市东部(图1),地貌上处于滨东丘陵和平原的过渡区域,西与宾西镇近邻,北与满井镇接壤。该区全年盛行西南风,年均温4.2 ℃,属于中温带湿润半湿润季风性气候,降雨量为550~700 mm。
1.2 样品采集与研究方法
本文以出露较好的居仁镇东兴屯剖面为研究对象,从沉积学、矿物学和地球化学的角度,对剖面砾石和细颗粒沉积物(泥、粉砂、砂)夹层进行研究。共获得34个样品,5个样品(砾石层中的粉砂和细沙夹层)用于重矿物分析,29个样品(泥、粉砂和极细砂夹层)用于地球化学分析。采用网格法1 m×1 m,对砾石进行岩性、砾径、砾向分选—磨圆和化学风化特征等统计工作。
样品经过碎样,手工淘洗,重液和电磁分离等操作后,在双目显微镜下进行重矿物鉴定。具体步骤如下:样品经粉碎烘干称重后,将其浸泡48 h进行初淘,利用三溴甲烷进行轻重矿物分离,将分离出的重矿物用酒精反复冲洗,并将冲洗后的重矿物烘干后用电子天平称重(精度为0.1 mg);鉴定方法采用条带法,以双目显微镜为工具,分离出重矿物后,随机挑选10个视域进行识别,为了缩小在分析过程中出现的误差,对鉴定结果取平均值。每个重矿物样品鉴定颗粒数均在600粒以上,然后计算出每种重矿物的颗粒百分比[10-12]。重矿物的测试在廊坊诚信地质公司进行。
样品经过自然烘干后,用研钵研磨成粉末,过200目标准分样筛,通过干筛法获取小于63 μm粒度组分。并对采集的样品进行了地球化学分析。常量元素的测试采用碱熔法,碱熔法耗时短且不会影响Si元素的测定,适合用于常规地质样品常量元素的前处理[13]。微量元素与稀土元素的测试采用酸溶法,相比于碱熔法,酸溶法对样品的消解更彻底,元素的提取更完全,误差较小。常量元素测试采用X射线荧光光谱仪。微量元素和稀土元素测试采用电感耦合等离子体质谱仪(ICP-MS),相对标准偏差分别小于±5%和±1%。样品的测试在兰州大学甘肃省西部矿产资源重点实验室进行。
2 结果
2.1 沉积学特征
居仁剖面是一套弱固结的棕黄色砂砾石层(图2a),呈条带状、短垄状分布,走向与附近山脉分水岭平行或垂直,砾石岩性以陆源碎屑岩、花岗岩、石英质为主。整个剖面厚20~30 m,剖面下部(0~3 m)夹有多层黏土—粉砂层(图2e),成层性明显,泥岩主要颜色为浅灰色、浅灰白色和灰绿色,见铁锈色斑、微细层理(图2e)、植物痕迹化石(图2b)以及硅化木(图2c)。在泥岩处测得的地层产状分别为340°∠35°、2°∠13°和6°∠16°。中部见多个旋回递变层理(图2d),砾石的粒级和含量自下(粗砂和砾石)而上(细砂或黏土)逐渐减少,构成下粗上细的递变层理。上部是紫红色或棕红色泥岩,风化破碎严重,形成泥球或泥砾结构。
居仁剖面砾石的粒径集中在20~250 mm(图3a),分选较差;砂砾石层无明显的定向排列;砾石风化程度(图3b)以无风化(52%)和弱风化(37%)为主,其次为中等风化(11%);磨圆度(图3c)以次棱角(57%)和次圆(37%)为主,其次为圆(5%)和棱角(1%);砾石成分(图3d)以陆源碎屑岩(43%)、花岗岩(28%)、石英质(26%)为主,其次为凝灰岩(2%)和流纹岩(1%)。
2.2 重矿物组成
居仁剖面共检测出23种重矿物,包括锆石、萤石、磷灰石、重晶石、白钛石、金红石、锐钛矿、黄铁矿、闪锌矿、石榴子石、电气石、绿帘石、钛铁矿、赤/褐铁矿等(表1),其中榍石、方铅矿、独居石、毒砂、辉石、角闪石、黄铜矿、磁铁矿、磁黄铁矿只在个别样品中偶尔出现。剖面样品的重矿物组成变化较大,以绿帘石(42%)和锐钛矿(9.9%)占优势,其次白钛石(8.7%),重晶石(15.2%)、黄铁矿(14.5%)、萤石(11.3%)和赤/褐铁矿(25.1%)在个别样品中大量出现,其他重矿物含量较少。
为了更加准确地反映物源,表1中列出了ATi指数和GZi指数[14]。ATi指数与磷灰石的风化作用呈负相关,值越高,风化越弱。GZi指数用来反映石榴子石的母岩组成。沉积物的ATi在0~96.10%变化(平均为45.25%),GZi在0~32.80%变化(平均为9.06%)。
2.3 常量元素
研究样品具有高硅富铝和富钾贫锰的特征(图4a),主要化学成分为SiO2、Al2O3和K2O,其次为Fe2O3和Na2O,而MgO、CaO、TiO2、P2O5、MnO含量较低。与UCC(上陆壳)[15]的平均化学元素组成相比,砂岩中TiO2和K2O明显富集,CaO、MgO和Na2O明显亏损;粉砂岩和泥岩中K2O明显富集,Fe2O3、MgO、CaO、Na2O、MnO和P2O5明显亏损;其他元素表现出不同程度的富集或亏损,SiO2和Al2O3含量与UCC相当。
2.4 微量元素
与UCC相比(图4b),对于过渡微量元素(TTE),砂岩中Zn和Ga富集,Co、Ni、Cu表现出不同程度的富集或亏损;粉砂岩和泥岩中Ga富集,Co、Ni、Cu亏损,Zn表现出不同程度的富集或亏损;但Sc、V、Cr组分含量基本和UCC相当。对于高场强元素(HFSE),砂岩中U 明显富集,Y、Zr、Hf、Th 组分含量基本和UCC 相当;粉砂岩中Zr、Hf、U 富集,Y 和Th 含量与UCC相当;泥岩中Hf、U富集,Y、Zr、Th含量与UCC相当;但Nb和Ta却表现出明显的亏损。对于大离子亲石元素(LILE),砂岩、粉砂岩和泥岩中Sr亏损,Cs明显富集,Rb和Ba组分含量基本和UCC相当,Pb表现出不同程度的富集或亏损。
2.5 稀土元素
样品的REE分配模式呈左陡右缓的分布趋势(图4c),说明物源相同且稳定。La-Sm曲线较陡,Eu处呈明显的V字形,Dy-Lu曲线较平缓显示出轻稀土富集、重稀土亏损以及Eu明显负异常的分布特征。稀土元素ΣREE介于129.84~298.79 μg/g,平均为195.72 μg/g,高于UCC和PAAS(后太古宙页岩标准值)[15]的稀土元素总量。Σ LREE 为113.13~270.85 μg/g,平均为176.31 μg/g,ΣHREE 为12.58~27.95 μg/g,平均为19.41 μg/g,LREE/HREE 为5.98~12.24,平均为9.13,同样说明轻稀土富集,稀土元素球类陨石的归一化模式与UCC、PAAS相似。LaN/YbN比值为6.41~14.01,平均为9.43,说明轻重稀土分异明显,轻稀土富集;LaN/SmN比值为2.87~6.71,平均为3.83,说明轻稀土元素分馏程度明显;GdN/YbN比值为1.27~2.12,平均为1.64,说明重稀土元素分馏程度明显。
3 讨论
3.1 化学风化特征
化学风化作用是沉积过程的先驱,是影响沉积物地球化学组成的重要过程之一[16]。通过沉积物的化学风化特征研究,可以为确定物源和重建古气候演化提供依据[17-19]。风化作用虽然是物质发生改变的催化剂,但元素的存在与否仍然取决于自身的性质。比如Al3+等稳定的阳离子具有惰性,大多会被保存下来;钠钾钙等不稳定的阳离子相对活跃,与外部环境中的元素发生化学反应,大部分会流失或发生改变。因此,Nesbitt et al.[3]提出使用化学蚀变指数CIA来衡量源区风化程度,其公式如下:CIA=100×[Al2O3(/ Al2O3+CaO*+Na2O+K2O)]式中:常量元素含量用摩尔浓度表示,CaO*是硅酸盐中的CaO含量。化学风化程度与CIA值呈正比,按照程度的大小可以分为四个等级:未风化、初级风化、中等风化、强烈风化,其对应的CIA值域分别为0~50、50~60、60~80、80~100。居仁剖面样品的CIA值分布范围为54~71,平均为59,高于上陆壳平均值48,表明这些沉积物经历了弱—中等的化学风化。
Nesbitt et al.[3]提出并创建了预测大陆化学风化趋势的A-CN-K三角模型图,此模型图依据质量平衡原理,参照长石淋溶实验的结果,采用矿物稳定性的热力学计算数据,真实地反映化学风化趋势。A-CN-K图解(图5a)显示,样品全部分布在斜长石与钾长石连线的上方,分布在UCC与PAAS之间,个别样品靠近PAAS,表明了弱—中等的化学风化。UCC指向陆源页岩的方向代表了典型的大陆风化趋势[20],样品的化学风化趋势基本与A-CN连线平行,这是理想的风化趋势,说明早期斜长石最先风化,风化产物为蒙脱石和伊利石,与UCC→PAAS风化趋势大致一致。样品数据点分布集中,说明样品经历了一个稳定的化学风化过程[21],相比于砂岩,粉砂岩和泥岩的分布更集中,这也说明粉砂岩和泥岩经历了更加稳定的化学风化过程。
化学风化趋势和强度也可以用MFW来表征(图5b),该图主要包括八个元素,相比于A-CN-K三角图解,MFW 图能更敏感地反映沉积物的化学风化程度[16]。M和F顶点分别表示未风化的镁铁质和长英质岩浆岩,而W顶点表示岩浆母岩的化学风化程度。在MFW三元图解中,数据点分布在花岗岩风化趋势线附近,大部分样品向F点靠近,5个砂岩样品向W点靠近,远离M点。除了两个砂岩样品的W值在73~75以外,其余样品的W值在15~58之间变化,平均值为35.7,表明了样品弱—中等的化学风化程度。这与A-CN-K三角图解反映的结果一致。
风化促进氧化,在不断的风化侵蚀下,即使是难溶的U4+也难以避免U元素的氧化,而转变成U6+。因此,Th/U值随着风化作用的增强而增加[7]。当其值大于4时与风化作用有关[22]。被研究样品的Th/U值为1.46~3.98(图6),平均值为2.84。大部分砂岩样品Th/U<3.0,并接近亏损地幔,说明其较低的化学风化程度;少数样品的Th/U 值与上地壳平均值(3.8)接近,反映其弱的化学风化程度。
在表生环境中,Rb 与Sr 有不同的地球化学行为,Rb容易淋湿,而Sr在风化过程中较稳定,所以可以利用Rb/Sr比值来评价化学风化强度[23]。Rb/Sr越高,化学风化作用越强。研究样品的Rb/Sr 值为0.43~1.35,平均值为0.76,略高于UCC的平均值,反映沉积物弱的化学风化程度。另外,样品的高ATi值,也表明沉积物弱的化学风化程度。
3.2 成熟度和分选再循环特征
碎屑颗粒在搬运和沉积过程中,由于其不同的水力行为,会发生机械分选作用,一定程度上影响陆源沉积物的地球化学组成和物源的判别。而沉积再循环主要控制沉积物的成熟度,可能影响其化学成分和化学风化程度的判别[24]。所以在物源判别之前,对沉积物的成熟度和分选再循环特征展开讨论十分必要。ICV指数(Index of Compositional Variability)常用来诊断母岩岩石类型和评估沉积物的成分成熟度[24-25],其公式如下:
ICV=(CaO+K2O+Na2O+Fe2O3+MgO+TiO2+MnO)/Al2O3
式中:ICV>1,表明沉积物中黏土矿物含量较低,成熟度低;ICV<1,表明沉积物中黏土含量较高,成熟度高。泥、粉砂和少部分极细沙样品的ICV<1,表明中等的成熟度,而大部分极细沙样品的ICV>1,表明较低的成分成熟度(图7a)。
风化指数WIP常用于估算沉积物的化学风化程度,甚至可以区分初次沉积和沉积再循环[3]。尽管WIP与CIA相关性良好,但WIP比CIA更敏感地反映了化学风化强度,其公式如下:
WIP=100×(CaO*/0.7+2Na2O/0.35+2K2O/0.25+MgO/0.9)
式中:CaO*为硅酸盐部分的含量。根据WIP 定义,WIP与CIA呈负相关。即使风化程度很高,首次循环的沉积物CIA/WIP比值也很少高于10,而再循环的沉积物CIA/WIP比值一般高于10。研究样品的WIP值为50~92,平均值为73。近年来,CIA结合WIP的二元图解(图7b)常被用来辨析沉积物的初次循环、再循环沉积和化学风化[26]。本次所有的样品均落在UCC化学风化趋势线之上,大部分样品CIA/WIP比值小于1,表明了首次循环的沉积物。
Th/Sc与Zr/Sc二元图解是经典的反映沉积物分选和再循环作用的地球化学手段[7]。沉积物中的重矿物会因分选再循环作用而富集,Zr通常富集在稳定性强的锆石中[16],而Sc正好相反,因此Zr/Sc比值可以用来反应锆石的富集程度。Th和Sc一般富集在酸性岩和基性岩中,并且不随沉积再循环变化,可以用来反映岩浆分异过程。当Zr/Sc和Th/Sc比值的变化趋势相似时,即沉积物沿岩浆成分趋势线呈线性分布[27],说明是首次循环的沉积物;当Zr/Sc比值变化范围很大,Th/Sc比值变化范围很小时,即沉积物偏离了岩浆趋势线,并沿着分选和沉积再循环趋势线分布时,说明是再循环的沉积物。对于研究样品来说,绝大部分样品沿岩浆分异趋势线分布(图8a),表明其受分选和沉积再循环的影响很小,这些沉积物来自首次循环;个别粉砂岩样品偏离了岩浆趋势线,具有较高的Zr/Sc值(>30),表明经历了一定程度的沉积再循环。
3.3 母岩组成
确定源区物质的组成和形成背景是以分析、鉴定碎屑沉积物的化学成分为依据的[31]。对于本研究来说,绝大部分样品经历了弱的化学风化程度和首次循环,所以其地球化学组成可以很好地指示母岩特征。Girty et al.[32]研究表明,Al2O3/TiO2值可用于初步确定沉积物的母岩成分。当Al2O3/TiO2<14时,反映其来源于镁铁质岩石,当Al2O3/TiO2值介于19~28 时,反映其来源于长英质岩石[32]。研究样品的Al2O3/TiO2值为18.96~32.84,平均值为24.26,指示了居仁剖面沉积物的长英质母岩属性。
Th/Sc和Zr/Sc在沉积循环中一般不发生改变,因此可以用来恢复母岩性质。居仁剖面的样品分布在安山岩和花岗岩之间区域,个别样品向花岗岩靠近,表明了中—酸性母岩的属性特征。在基于常量元素诊断的四种物源属性的F1-F2[33]判别图解中(图8b),几乎所有的样品落在长英质火成岩区域和石英岩沉积物区域。
La/Th与Hf图解经常被用作沉积分选、再循环以及母岩属性的判别[34],在该图解中,样品分布在酸性长英质岛弧区域和花岗岩之间(图8c)。另外,在La/Sc与Co/Th母岩属性判别图解[35]中,样品具有较低的Co/Th值和较高的La/Sc值,大部分落在长英质火山岩、花岗岩、UCC、PAAS、TTG之间,并且有向花岗岩过渡的趋势(图8d)。
长英质母岩具有较高的LREE/HREE比值,Eu负异常,而镁铁质母岩具有较低的LREE/HREE比值,Eu正异常[16]。样品的LREE/HREE较高,平均为9.1,Eu负异常,表明母岩组成与长英质火山岩密切相关。GZi指数主要用来反映物源区的母岩组成[36],重矿物结果显示样品的GZi指数较低,平均值仅为9.06%,反映其母岩组成与火山岩密切相关。砾石统计结果也表明居仁剖面砾石成分以陆源碎屑岩、花岗岩、石英质为主,这与地球化学显示的结果一致,共同反映了居仁剖面沉积物的长英质母岩组成。
3.4 沉积环境
沉积物的结构是一个广泛而复杂的问题,采用一些统计学方法揭示沉积物的沉积过程显得十分必要[37]。其中砾岩的分选性、磨圆度、成分以及排列方式,特别是砾石粒径、排列和磨圆度是揭示砾岩形成的水动力条件和砾石成因类型等的重要标志[38-40]。居仁剖面的砾石粒径粗,个别粒径甚至高达170~250 mm,尽管分选差,没有定向的排列,但有较好的磨圆度(次圆和较圆占比高达42%)。砾石颗粒之间的基质主要是砂。砾石的这些特征表明当时存在很强的水动力条件,且砾石经过长距离搬运或水流的反复冲刷。另外,剖面中存在泥岩或粉砂夹层,层面及层理特征明显,在这些夹层中能看到植物的痕迹化石和硅化木以及正粒序层理,这些特征均表明了长期定向水流的作用。颜色是岩石最醒目、最易区分的标志,也是鉴定岩石和开展环境分析的重要依据之一,能够用来初步评估岩石形成的沉积环境[41-42]。居仁剖面泥岩颜色主要为浅灰色和灰绿色,说明是一个长期被水淹没的还原环境。
稳定性重矿物的抗蚀力强,能有效保存源岩属性,因此能够用来指示沉积物的来源及搬运条件,从而为沉积物的沉积演化提供定量依据[43-51]。居仁剖面沉积物中的黄铁矿和重晶石含量较高,这两种矿物都是在一定水深条件下还原环境的产物。同时,地球化学结果反映的沉积物弱的化学风化程度,也和还原条件相匹配。综合以上沉积学、重矿物和地球化学特征,我们推断居仁剖面地层可能是湖滨或河流入湖三角洲沉积。
3.5 与罗家窝棚组标准地层的对比
早期的研究将居仁剖面视为罗家窝棚组,并认为其成因类型为早更新世早期的冰碛物堆积[9]。罗家窝棚组是一套弱—中等固结的紫红色砾石层,泥质基质主要存在于孔隙和颗粒的接触面之间,具有颗粒支撑结构,局部含泥质和粉砂质/砂质透镜体[52]。区域地质资料认为罗家窝棚组(牛头山、拉林、居仁)为哈尔滨地区第四系(下限)最老的地层,直接覆盖在白垩纪风化壳之上,地层年代为2.4~2.5 Ma[9]。尽管居仁剖面的年代学研究尚未展开,然而,经过我们的野外考察,发现居仁剖面与罗家窝棚组在沉积学特征上存在显著差异。
与罗家窝棚组紫红色弱—中等固结的砂砾石(图9a)相比[52],居仁剖面的砾石为棕黄色弱固结(图9b)。从砾石的磨圆度和风化程度来看,居仁剖面的砾石磨圆度(次圆与圆占42%)明显好于罗家窝棚组(次圆与圆占22%),而风化程度显著低于罗家窝棚组,罗家窝棚组砾石中等风化占26%,强风化占7%,居仁剖面砾石中等风化仅占11%,无强风化砾石[52]。
从砾石的岩性对比可以看出,罗家窝棚组砾石岩性以砂岩+粉砂岩(44%)和花岗质(37%)为主,其次为凝灰岩(11%)、石英质(3.4%)、闪长岩(2%)、玄武岩(1%)、流纹岩(1%)[52],而居仁剖面砾石岩性以陆源碎屑岩(43%)、花岗岩(28%)、石英质(26%)为主,其次为凝灰岩(2%)、流纹岩(1%)。另外,两者的基质也存在显著区别,罗家窝棚组砾石层中的基质为紫红色的泥(图9c)[52],而居仁剖面砾石中的基质为砂(图9d)。从地层结构来看,罗家窝棚组的细颗粒物质是以透镜体的方式存在(图9e)[52],而细颗粒沉积物(泥、粉砂和极细沙)在居仁剖面中以夹层的方式存在,夹层的层面及层理特征明显,向两侧延伸很远(图9f)。从沉积物的成因类型来看,罗家窝棚组为洪积堆积[52],而居仁剖面为湖滨或河流入湖三角洲沉积,但二者都可以反映山地的隆升、侵蚀、气候以及地表水系的演化。从地貌特征来看,罗家窝棚组为峁状地形,出露范围较小[52],而居仁剖面出露的范围远大于罗家窝棚组,由此可推断其年代要早于罗家窝棚组。由于居仁剖面缺少第三纪地层,区域内大面积出露白垩纪地层,因此居仁剖面可以作为白垩纪的建组层型剖面[52]。
综上所述,居仁剖面和罗家窝棚组在沉积物颜色、固结程度、沉积物结构(砾石与基质性质)、地层结构(夹层与透镜体)、沉积物的成因类型以及地貌特征等方面存在显著差异。且地貌特征表明居仁剖面老于罗家窝棚组,所以早期学者[9]将居仁剖面视为罗家窝棚组是不恰当的。
4 结论
本文建立了居仁剖面的沉积学、矿物学和地球化学属性,探讨了化学风化、分选再循环特征、母岩性质、沉积环境以及与罗家窝棚组标准地层的区别,取得如下认识。
(1) 居仁剖面是一套弱固结的棕黄色砂砾石层,剖面的下部夹有黏土—粉砂层,见铁锈色斑、微细层理和植物痕迹化石以及硅化木。中部见多个旋回递变层理,上部是紫红色或棕红色泥岩。
(2) 居仁剖面沉积物的化学风化程度较弱,大部分沉积物经历了首次循环。长英质岩浆母岩为该剖面沉积物提供了重要物源,推测该套地层为湖滨或河流入湖三角洲沉积。
(3) 居仁剖面和罗家窝棚组在沉积学特征方面存在明显差异,该剖面年代可能要早于罗家窝棚组,甚至可能达到白垩纪,可以作为白垩纪的建组层型剖面。
致谢 重矿物组成得到了廊坊诚信地质公司张佩萱老师的帮助,地球化学组成分析得到兰州大学甘肃省西部矿产资源重点实验室熊聪慧和闫晓丽老师的大力支持,研究生汪进秋、侯心茹和李秋杭参与了部分野外取样工作,研究生魏振宇、赵倩、李思琪、孙建华、孙杨、徐园园和张瑞参与论文写作讨论,在此一并表示感谢。
参考文献(References)
[1] Nesbitt H W, Young G M. Petrogenesis of sediments in the absence
of chemical weathering: Effects of abrasion and sorting on
bulk composition and mineralogy[J]. Sedimentology, 1996, 43
(2): 341-358.
[2] Muhs D R. Mineralogical maturity in dunefields of North America,
Africa and Australia[J]. Geomorphology, 2004, 59(1/2/3/
4): 247-269.
[3] Nesbitt H W, Young G M. Early Proterozoic climates and plate
motions inferred from major element chemistry of lutites[J]. Nature,
1982, 299(5885): 715-717.
[4] Weltje G J, von Eynatten H. Quantitative provenance analysis of
sediments: Review and outlook[J]. Sedimentary Geology,
2004, 171(1/2/3/4): 1-11.
[5] Garzanti E, Vezzoli G, Andò S, et al. Quantifying sand provenance
and erosion (Marsyandi River, Nepal Himalaya)[J].
Earth and Planetary Science Letters, 2007, 258(3/4): 500-515.
[6] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic
graywackes and mudrocks: Provenance and tectonic control
[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.
[7] McLennan S M, Hemming S, McDaniel D K, et al. Geochemical
approaches to sedimentation, provenance, and tectonics[J].
Special Papers-Geological Society of America, 1993, 284:
21-40.
[8] 蔡观强,郭锋,刘显太,等. 碎屑沉积物地球化学:物源属性、构
造环境和影响因素[J]. 地球与环境,2006,34(4):75-83.[Cai
Guanqiang, Guo Feng, Liu Xiantai, et al. Clastic sediment geochemistry:
Implications for provenance and tectonic setting and its
influential factors[J]. Earth and Environment, 2006, 34(4): 75-83.]
[9] 叶启晓. 黑龙江省哈尔滨(荒山、顾乡屯)地区第四纪地质研究
[R]. 1984:1-172.[Ye Qixiao. Quaternary geology research in
Harbin (Huangshan,Guxiangtun) area, Heilongjiang province
[R]. 1984: 1-172.]
[10] 中国地质科学院地矿所. 砂矿物鉴定手册[M]. 北京:地质出
版社,1977:58-63.[Institute of Geology and Mineral Resources,
Chinese Academy of Geological Sciences. Sand mineral appraisal
manual[M]. Beijing: Geological Publishing House,
1977: 58-63.]
[11] 沈丽琪. 沉积岩重矿物研究中的几个重要概念及其应用[J].
中国科学 B 辑,1985(1):70-78.[Shen Liqi. Several important
concepts and applications in the study of heavy minerals in sedimentary
rocks[J]. Science in China, Seri. B, 1985(1):
70-78.]
[12] 马婉仙. 重砂测量与分析[M]. 北京:地质出版社,1990:159-
163. [Ma Wanxian. Heavy sand measurement and analysis
[M]. Beijing: Geological Publishing House, 1990: 159-163.]
[13] 熊聪慧,王雪莲. 电感耦合等离子体发射光谱法测定地质样
品中K、Ca 等常量元素的前处理方法对比[J]. 分析测试技术
与仪器,2020,26(1):30-36.[Xiong Conghui, Wang Xuelian.
Comparison of pretreatment methods for major elements such as
potassium, calcium, etc, in determination of geological samples
by inductively coupled plasma optical emission spectrometry
[J]. Analysis and Testing Technology and Instruments,
2020, 26(1): 30-36.]
[14] 孙磊,谢远云,康春国,等. 呼伦贝尔沙地重矿物、Sr-Nd 同位
素组成及其对亚洲风尘吸通的指示[J]. 中国地质,2021,48
(6):1965-1974.[Sun Lei, Xie Yuanyun, Kang Chunguo, et
al. Heavy minerals, Sr-Nd isotopic composition of sandy land
in Hulun Buir, Inner Mongolia and their implications for Asian
aeolian dust system [J]. Geology in China, 2021,48(6):1965-
1974.]
[15] Taylor S R, McLennan S M. The continental crust: Its composition
and evolution[M]. Carlton: Blackwell Scientific Publication,
1985.
[16] Xie Y Y, Yuan F, Zhan T, et al. Geochemical and isotopic
characteristics of sediments for the Hulun Buir Sandy Land,
northeast China: Implication for weathering, recycling and dust
provenance[J]. Catena, 2018, 160: 170-184.
[17] 付玲,关平,赵为永,等. 柴达木盆地古近系路乐河组重矿物特征
与物源分析[J]. 岩石学报,2013,29(8):2867-2875.[Fu Ling,
Guan Ping, Zhao Weiyong, et al. Heavy mineral feature and
provenance analysis of Paleogene Lulehe Formation in Qaidam
Basin[J]. Acta Petrologica Sinica, 2013, 29(8): 2867-2875.]
[18] 杨守业,印萍. 自然环境变化与人类活动影响下的中小河流
沉积物源汇过程[J]. 海洋地质与第四纪地质,2018,38(1):1-
10.[Yang Shouye, Yin Ping. Sediment source-to-sink processes
of small mountainous rivers under the impacts of natural environmental
changes and human activities[J]. Marine Geology &
Quaternary Geology, 2018, 38(1): 1-10.]
[19] 林刚,陈琳莹,罗敏,等. 西太平洋新不列颠海沟表层沉积物
的地球化学特征及其物源指示[J]. 海洋地质与第四纪地质,
2019,39(3):12-27.[Lin Gang, Chen Linying, Luo Min, et al.
The geochemical characteristics of the surface sediments in the
New Britain Trench of the western Pacific Ocean and their implications
for provenance[J]. Marine Geology & Quaternary Geology,
2019, 39(3): 12-27.]
[20] 李徐生,韩志勇,杨守业,等. 镇江下蜀土剖面的化学风化强
度与元素迁移特征[J]. 地理学报,2007,62(11):1174-1184.
[Li Xusheng, Han Zhiyong, Yang Shouye, et al. Chemical
weathering intensity and element migration features of the
Xiashu loess profile in Zhenjiang[J]. Acta Geographica Sinica,
2007, 62(11): 1174-1184.]
[21] Fedo C M, Nesbitt H W, Young G M. Unraveling the effects of
potassium metasomatism in sedimentary rocks and paleosols,
with implications for paleoweathering conditions and provenance
[J]. Geology, 1995, 23(10): 921-924.
[22] McLennan S M, Hemming S R, Taylor S R, et al. Early Proterozoic
crustal evolution: Geochemical and Nd-Pb isotopic evidence
from metasedimentary rocks, southwestern North America[J].
Geochimica et Cosmochimica Acta, 1995, 59(6): 1153-1177.
[23] 陈骏,安芷生,刘连文,等. 最近2. 5Ma以来黄土高原风尘化
学组成的变化与亚洲内陆的化学风化[J]. 中国科学(D辑):
地球科学,2001,31(2):136-145.[Chen Jun, An Zhisheng, Liu
Lianwen, et al. Variations in chemical compositions of the eolian
dust in Chinese Loess Plateau over the past 2. 5 Ma and
chemical weathering in the Asian inland[J]. Science China
(Seri. D): Earth Sciences, 2001, 31(2): 136-145.]
[24] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling
and basement composition on evolution of mudrock
chemistry in the southwestern United States[J]. Geochimica et
Cosmochimica Acta, 1995, 59(14): 2919-2940.
[25] Cullers R L, Podkovyrov V N. Geochemistry of the Mesoproterozoic
Lakhanda shales in southeastern Yakutia, Russia: Implications
for mineralogical and provenance control, and recycling
[J]. Precambrian Research, 2000, 104(1/2): 77-93.
[26] Garzanti E, Padoan M, Andò S, et al. Weathering and relative
durability of detrital minerals in equatorial climate: Sand petrology
and geochemistry in the East African Rift[J]. The Journal
of Geology, 2013, 121(6): 547-580.
[27] 袁方,谢远云,詹涛,等. 地球化学组成揭示的杜蒙沙地化学
风化和沉积再循环特征及其对风尘物质贡献的指示[J]. 地理
科学,2017,37(12):1885-1893.[Yuan Fang, Xie Yuanyun,
Zhan Tao, et al. Source-area weathering and recycled sediment
for Dumeng sandy land inferred from geochemistry compositions:
Implication for contribution to aeolian dust[J]. Scientia
Geographica Sinica, 2017, 37(12): 1885-1893.]
[28] 李碧乐,孙永刚,陈广俊,等. 小兴安岭东安金矿区细粒正长花
岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义[J].
地球科学,2016,41(1):1-16.[Li Bile, Sun Yonggang, Chen
Guangjun, et al. Zircon U-Pb geochronology, geochemistry and
Hf isotopic composition and its geological implication of the finegrained
syenogranite in Dongan goldfield from the Lesser
Xing'an Mountains[J]. Earth Science, 2016, 41(1): 1-16.]
[29] 耿雯,秦江锋,李永飞,等. 黑龙江张广才岭一面坡晚三叠世
花岗岩地球化学特征和LA-ICP-MS 锆石U-Pb 年龄[J]. 地质
通报,2014,33(9):1333-1341.[Geng Wen, Qin Jiangfeng, Li
Yongfei, et al. Geochemistry and LA-ICP-MS zircon U-Pb age
of the Late Triassic granite from Yimianpo area, Zhangguangcai
Mountain, Heilongjiang province[J]. Geological Bulletin of
China, 2014, 33(9): 1333-1341.]
[30] 卢仁,梁涛. 华北克拉通南缘早白垩世天目山A型花岗岩的
锆石稀土元素和岩石地球化学特征[J]. 地质论评,2020,66
(6):1676-1695.[Lu Ren, Liang Tao. Zircon rare earth elements
and geochemical features of the Early Cretaceous Tianmushan
A-type granite in the south margin of the North China
Craton[J]. Geological Review, 2020, 66(6): 1676-1695.]
[31] 何雨思,高福红,修铭,等. 张广才岭福兴屯组的形成时代、物
源及构造背景[J]. 地球科学,2019,44(10):3223-3236.[He
Yusi, Gao Fuhong, Xiu Ming, et al. Age, Provenance and tectonic
setting of Fuxingtun Formation in Zhangguangcai Range
[J]. Earth Science, 2019, 44(10): 3223-3236.]
[32] Girty G H, Ridge D L, Knaack C. Provenance and depositional
setting of Paleozoic chert and argillite, Sierra Nevada, California
[J]. Journal of Sedimentary Research,1996, 66(1):
107-118.
[33] Roser B P, Korsch R J. Provenance signatures of sandstonemudstone
suites determined using discriminant function analysis
of major-element data[J]. Chemical Geology, 1988, 67(1/2):
119-139.
[34] Bauluz B, Mayayo M J, Fernandez-Nieto C, et al. Geochemistry
of Precambrian and Paleozoic siliciclastic rocks from the Iberian
Range (NE Spain): Implications for source-area weathering,
sorting, provenance, and tectonic setting[J]. Chemical Geology,
2000, 168(1/2): 135-150.
[35] Gu X X. Geochemical characteristics of the Triassic Tethysturbidites
in northwestern Sichuan, China: Implications for
provenance and interpretation of the tectonic setting
[J]. Geochimica et Cosmochimica Acta, 1994, 58(21): 4615-
4631.
[36] 康春国,李长安,谢远云,等. 哈尔滨地区风尘黄土重矿物特
征及物源分析[J]. 自然灾害学报,2011,20(4):43-51.[Kang
Chunguo, Li Changan, Xie Yuanyun, et al. Heavy mineral
characteristics of eolian loess deposits in Harbin area and its
provenance implications[J]. Journal of Natural Disasters,
2011, 20(4): 43-51.]
[37] 林秀斌,陈汉林,Wyrwoll K H,等. 青藏高原东北部隆升:来自
宁夏同心小洪沟剖面的证据[J]. 地质学报,2009,83(4):455-
467.[Lin Xiubin, Chen Hanlin, Wyrwoll K H, et al. Uplift of
the northeastern Tibetan Plateau: Evidences from the Xiaohonggou
section in Tongxin, Ningxia[J]. Acta Geologica Sinica,
2009, 83(4): 455-467.]
[38] 成都地质学院,刘宝珺. 沉积岩石学[M]. 北京:地质出版社,
1980:104-113. [Chengdu Institute of Geology, Liu Baojun.
Sedimentary petrology[M]. Beijing: Geological Publishing
House, 1980: 104-113.]
[39] 姜在兴. 沉积学[M]. 北京:石油工业出版社,2003:41-50.
[Jiang Zaixing. Sedimentology[M]. Beijing: Petroleum Industry
Press, 2003: 41-50.]
[40] 朱筱敏. 沉积岩石学[M]. 第四版. 北京:石油工业出版社,
2008:56-58.[Zhu Xiaomin. Sedimentary petrology[M]. 4th
ed. Beijing: Petroleum Industry Press, 2008: 56-58.]
[41] 王成善,胡修棉. 白垩纪世界与大洋红层[J]. 地学前缘,
2005,12(2):11-21.[Wang Chengshan, Hu Xiumian. Cretaceous
world and oceanic red beds[J]. Earth Science Frontiers,
2005, 12(2): 11-21.]
[42] 宋慧波,毕瑜珺,胡斌. 豫西下二叠统太原组遗迹化石与古氧
相的响应特征[J]. 古地理学报,2017,19(4):653-662.[Song
Huibo, Bi Yujun, Hu Bin. Responding characteristics between
ichnofossils and palaeo-oxygen facies in the Lower Permian
Taiyuan Formation of western Henan province[J]. Journal of
Palaeogeography, 2017, 19(4): 653-662.]
[43] 孙白云. 黄河、长江和珠江三角洲沉积物中碎屑矿物的组合
特征[J]. 海洋地质与第四纪地质,1990,10(3):23-34.
[Sun Baiyun. Detrital mineral assemblages in the Huanghe,
Changjiang and Zhujiang River delta sediments[J]. Marine
Geology & Quaternary Geology, 1990, 10(3): 23-34.]
[44] 陈丽蓉. 中国海沉积矿物学[M]. 北京:海洋出版社,2008:1-
476.[Chen Lirong. Sedimentary mineralogy of the China sea
[M]. Beijing: Ocean Press, 2008: 1-476.]
[45] 金秉福,林振宏,杨群慧,等. 沉积矿物学在陆缘海环境分析
中的应用[J]. 海洋地质与第四纪地质,2002,22(3):113-118.
[Jin Bingfu, Lin Zhenhong, Yang Qunhui, et al. Application of
sedimentary mineralogy to the environmental analysis in marginal
seas[J]. Marine Geology & Quaternary Geology, 2002, 22
(3): 113-118.]
[46] 和钟铧,刘招君,张峰. 重矿物在盆地分析中的应用研究进展
[J]. 地质科技情报,2001,20(4):29-32.[He Zhonghua, Liu
Zhaojun, Zhang Feng. Latest progress of heavy mineral research
in the basin analysis[J]. Geological Science and Technology
Information, 2001, 20(4): 29-32.]
[47] 康春国,李长安,王节涛,等. 江汉平原沉积物重矿物特征及
其对三峡贯通的指示[J]. 地球科学:中国地质大学学报,
2009,34(3):419-427.[Kang Chunguo, Li Changan, Wang
Jietao, et al. Heavy minerals characteristics of sediments in
Jianghan Plain and its indication to the forming of the Three
Gorges[J]. Earth Science: Journal of China University of Geosciences,
2009, 34(3): 419-427.]
[48] 李双建,王清晨,李忠. 库车坳陷库车河剖面重矿物分布特征
及其地质意义[J]. 岩石矿物学杂志,2005,24(1):53-61.[Li
Shuangjian, Wang Qingchen, Li Zhong. Characteristics of Mesozoic
and Cenozoic heavy minerals from Kuche River section
in Kuche Depression and their geological implications[J]. Acta
Petrologica et Mineralogica, 2005, 24(1): 53-61.]
[49] 方世虎,宋岩,贾承造,等. 新疆博格达地区中新生代碎屑成分
特征与盆山分异过程[J]. 地质学报,2007,81(9):1229-1237.
[Fang Shihu, Song Yan, Jia Chengzao, et al. The Mesozoic-
Cenozoic clastic composition of Bogda area, Xinjiang: Implications
on the evolution of basin-range pattern[J]. Acta Geologica
Sinica, 2007, 81(9): 1229-1237.]
[50] 李忠,王道轩,林伟,等. 库车坳陷中—新生界碎屑组分对物
源类型及其构造属性的指示[J]. 岩石学报,2004,20(3):655-
666.[Li Zhong, Wang Daoxuan, Lin Wei, et al. Mesozoic-
Cenozoic clastic composition in Kuqa Depression, northwest
China: Implication for provenance types and tectonic attributes
[J]. Acta Petrologica Sinica, 2004, 20(3): 655-666.]
[51] 朱志军. 川东南地区志留系小河坝组沉积体系及物质分布规
律研究[M]. 北京:地质出版社,2011:36-42.[Zhu Zhijun. A
study on the sedimentary system and material distribution law of
the Silurian Xiaoheba Formation in southeastern Sichuan[M].
Beijing: Geological Publishing House, 2011: 36-42.]
[52] 魏春艳,谢远云,康春国,等. 哈尔滨地区罗家窝棚组地层
的沉积学、矿物学及地球化学特征:对沉积环境的指示
[J]. 地质科学, 2022. 57(1): 172-189. [Wei Chunyan, Xie
Yuanyun, Kang Chunguo, et al. Sedimentological, mineralogical,
and geochemical characteristics of the Luojiawopeng Fm. in
Harbin: Implications for the sedimentary environment[J]. Chinese
Journal of Geology, 2022, 57(1): 172-189.]