滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探
2023-04-29贾永斌于文修温汉捷罗重光杨光树杨洋崔燚
贾永斌 于文修 温汉捷 罗重光 杨光树 杨洋 崔燚
关键词 氧化还原条件;古盐度;古气候;黏土岩;滇中盆地
0 引言
锂作为一种重要的战略性矿产资源,被广泛的应用于电池、航空航天、核反应、医药、农业等方面[1-4]。全球锂矿床主要有盐湖型、伟晶岩型和沉积型三大类,其资源量分别为66%、26%和8%[5-6]。与盐湖型和伟晶岩型锂矿资源储量最丰富的国家智利、玻利维亚等国[7-9]相比,我国并不占优势。近年来,一类新的黏土型锂资源在我国西南地区被逐渐发现和认识[10]。研究人员在滇中盆地发现下二叠统倒石头组黏土岩中具有锂的超常富集现象,其锂含量超过铝土岩中锂的综合利用指标(Li2O≥500 μg/g)[10],形成了潜在巨量锂资源。
滇中盆地是在长期隆起的川滇古陆核(习称康滇古陆)于印支晚期经剧烈沉降形成的中、新生代沉积盆地,位于康滇裂谷带中南段。盆地以近南北方向为长轴,近东西向为短轴的中、新生代沉积—构造盆地,南北长约300 km,东西平均宽107 km,面积约32 100 km2。盆地北西向以小金河断裂为界,与盐源—丽江凹陷带相邻;南西向以金沙江—苍山—哀牢山断裂为界。区内地层发育齐全,从前震旦系至第四系均有分布。研究区位于盆地南缘(图1),其中赋矿地层倒石头组(P1d)分布较为广泛,在昆明市郊、晋宁二街、曲靖以北、玉溪东部小石桥、江川西部和通海县以南均有出露。由于区域沉积环境的不同,不同区域倒石头组(P1d)地层岩性略有不同。在昆明市郊、晋宁二街等地区,倒石头组地层的岩性自下而上主要为石英砂岩、页岩、含碳质泥岩、铝土岩、铝土质页岩等。在曲靖以北,地层岩性下部主要为紫红色中细粒石英砂岩,中部主要为黑色页岩和含碳质泥岩,上部为青灰色夹杂灰白色铝土岩。在玉溪东部小石桥、江川西部和通海县以南等地区,倒石头组(P1d)地层岩性自下而上为铝土岩、铝土页岩、碳质页岩等。
本研究选取滇中盆地南缘地区的两条典型钻孔剖面(ZK05、ZK06)作为研究对象,拟通过富锂黏土岩中各元素的富集变化情况,系统讨论其变化规律,指示沉积环境(古盐度、古气候、氧化还原条件)对锂超常富集的制约作用,为后续滇中盆地的锂资源勘察提供参考。
1 样品采集和测试方法
本次研究样品采自滇中盆地南缘ZK-05号、ZK-06号钻孔岩心。共采集倒石头组样品27件,详细钻孔位置见图1。样品岩性主要包括泥页岩、铝土岩和黏土岩。样品元素含量测定在广州澳实分析检测有限公司完成,采用四酸消解法,质谱/光谱仪综合定量。测试仪器分别为美国Agilent 7700x型电感耦合等离子体发射质谱仪和美国Agilent VISTA型电感耦合等离子体发射光谱仪。测试结果相对偏差RD≤10%,相对误差RE≤10%。黏土岩矿物成分在中国科学院地球化学研究所矿床地球化学国家重点实验室测试。分析仪器为日本理学公司产D/Max-2200型X射线衍射仪,CuKα辐射、石墨单色器滤波、管电压40 kV、管电流30 mA。XRD测试在中国科学院地球化学研究所完成,样品研磨成粉末至200目,使用背压制样法,将研磨好的样品装入铝制样品架,再将铝制样品架放入综合型多功能水平高分辨X射线衍射仪(日本理学公司)样品台的插槽,进行测试。
2 测试结果分析及讨论
2.1 古盐度及其对锂富集的控制
古盐度是古沉积物对水体盐度的记录,可作为分析地质历史中沉积环境特征的一个重要指标[11]。对于古盐度的判别主要有古生物、常量同位素和微量元素地球化学方法[12-16]。本文主要采用微量元素含量及比值法对倒石头组沉积期盆地古盐度进行分析。Sr、Ga元素的含量对水体盐度变化具有良好的指示作用。前人研究指出咸水环境中Sr的含量大于800μg/g,Ga小于8 μg/g;淡水环境中Sr小于500 μg/g,Ga大于17 μg/g[17-18]。研究区27件样品中,Sr含量为3.9~36.1 μg/g,平均为10.87 μg/g,所有值均小于500 μg/g;Ga含量为32.3~51.3 μg/g,平均为40.38 μg/g,所有值均大于17 μg/g(表1)。Sr、Ga含量指示盆地南缘倒石头组总体属于淡水沉积环境。
Ba2+在水体的迁移能力比较弱,溶解度较小,当水体盐度逐渐升高时会和咸水中的SO24 -结合,以BaSO4 的形式沉淀下来。相反,Sr元素的溶解度更大,即使水体盐度升高,Sr元素仍能以离子的形式在水体中保存一段时间[19-20]。因此,Sr/Ba比值可以作为地层在沉积过程中水体盐度变化的判别指标[21-23]。一般认为Sr/Ba比值大于1.0为海相咸水,小于0.6为陆相淡水,介于0.6~1为半咸水相[11]。研究区所有样品Sr/Ba值介于0.01~0.48,平均值为0.15,数据均小于0.6(表1),由此推断研究区倒石头组沉积期主要为淡水陆相沉积环境。
沉积环境古盐度的变化对锂元素在黏土岩中的富集具有重要控制作用(图2)。当水体盐度逐渐升高,黏土岩中锂的含量呈现先下降,后上升的趋势(图2c)。ZK-05和ZK-06样品Sr/Ba比值显示水体盐度升高,黏土岩中锂的含量呈现上升趋势(图2f,g)。姚双秋等[24]对桂西地区上二叠统合山组黏土岩进行研究时发现锂的超常富集现象,其锂含量介于3.56~2 460 μg/g。钟海仁[25]在重庆南川铝土矿中发现伴生Li元素富集程度较高,含量介于5.2~1 542 μg/g。王行军等[26]在滇西北鹤庆县松桂铝土矿中发现Li元素含量介于19~1 290 μg/g。莫光员等[27]在黔北地区浣溪铝土矿中发现锂元素含量较高,含量介于25~1 000 μg/g。以上不同区域铝土矿(黏土岩)成矿时代虽不同,但均有一个共性,即下伏地层均为碳酸盐岩。结合不同区域古盐度与锂元素在地层中的含量变化关系(图2h),表明当古水体的盐度逐渐升高时,地层中锂元素的含量呈现出下降的趋势。
2.2 氧化还原性及其对锂富集的控制
利用微量元素的比值可以很好地指示沉积环境的氧化—还原条件这一特性[28],本次通过U/Th值、δU值、V/(V+Ni)值、V/Cr值和U(EF)-Mo(EF)协变模式图来综合分析研究区倒石头组地层形成时的氧化—还原条件。
U元素化学性质活泼,迁移能力较强,往往被氧化和淋滤丢失。而Th元素有较强的惰性,在成岩作用中基本上不发生迁移。因此,U/Th比值和δU值可以判断沉积环境的氧化—还原状态。一般来说,氧化环境中U/Th比值小于0.75,还原环境中U/Th比值大于1.25;δU 值的关系式为δU=2U/(Th/3+U),还原环境中δU>1,正常环境中δU<1[29-31]。样品微量元素分析结果表明U/Th 值介于0.13~0.57,比值均小于0.75,δU值介于0.57~1.26,平均值为0.91,大部分值小于1(表1)。根据判别指标,倒石头组沉积环境总体为氧化—弱还原的环境。
V元素在沉积环境中表现出氧化条件时易溶,而Cr、Ni元素在还原环境中常以硫化物形式沉淀。因此,V/(V+Ni)比值、V/Cr比值可指示沉积水体的氧化还原环境。前人研究表明在氧化环境中V/(V+Ni)<0.6,V/Cr<2;氧化还原过渡环境中V/(V+Ni)比值介于0.6~0.84,V/Cr 比值介于2.0~4.25;还原环境中V/(V+Ni)>0.84,V/Cr>4.25[32-37]。27件样品微量元素结果分析表明V/(V+Ni)值介于0.48~0.86,平均值为0.63,V/Cr值介于0.45~1.17,平均值为0.68,比值均小于2(表1),指示研究区倒石头组沉积水体为氧化—弱还原的过渡环境。Mo和U元素作为对氧化还原敏感的元素,能够准确地反映沉积时期的环境特征。缺氧环境虽然都能使U和Mo富集,但是他们的地球化学行为有较大差异。在氧化—还原沉积环境附近,U首先在沉积物中富集[38-39],而Mo在沉积物中富集的条件比较苛刻,需要H2S的参与[40-41]。因此,在含氧量较少的环境中,U元素优先在沉积物中富集,Mo元素次之;当海水中存在Fe、Mn等的氧化物时,则会加速沉积物中Mo元素的富集,而U元素在这个过程中不受影响[42]。基于U、Mo元素对沉积环境氧化还原性的敏感以及在沉积过程中表现出的元素特性,Tribovillard et al.[43]提出了U(EF)-Mo(EF)协变模式图来指示盆地在沉积过程中的氧化—还原环境和盆地的受限程度,其中U(EF)表示U的富集系数,Mo(EF)表示Mo的富集系数。富集系数X(EF)的计算公式为X(EF)=(X/Al)样品(/ X/Al)平均页岩。研究区样品在U(EF)-Mo(EF)协变模式图中的数据落点均未在缺氧和硫化的区域(图3),表明滇中二叠系倒石头组地层在沉积过程中环境的含氧量较高。同时绝大多数样品点落在1倍正常海水盐度之下,指示倒石头组在沉积过程中处于弱—中等的局限滞留环境,可能是因为在局限滞留的沉积环境下缺少来自开大洋Mo和U的持续补给,导致沉积物中Mo/U比值降低。对于少数样品落点在现代正常海水盐度之上,可能为研究区二叠系倒石头组地层在沉积晚期与大洋连通,导致大洋中的Mo和U持续补给,使得Mo/U比值升高。
沉积环境的氧化还原性,对锂元素在黏土岩(铝土矿)中的富集具有较为明显的控制作用(图4)。对比研究区黏土岩(铝土矿)伴生Li含量与氧化还原指标的关联性,当δU值和U/Th比值增大时,地层中锂含量有增加的趋势(图4a,d)。结合桂西、重庆和滇西北黏土岩(铝土矿)形成时的氧化还原条件与锂含量的变化关系[28-31],表明当沉积环境在氧化范围内变化时,环境含氧量的减少有利于Li元素在黏土岩(铝土矿)中富集(图5a);当沉积环境演化到氧化还原过渡区间时,由于环境中含氧量进一步减少,黏土岩(铝土矿)中Li元素富集呈现下降趋势;当沉积环境为还原环境时,黏土岩(铝土矿)的Li元素含量最低。
2.3 古气候及其对锂富集的控制
古气候的研究方法主要有古地磁学、碳氧同位素[44]、古生物化石、微量元素比值法[45]、黏土矿物分析法和CIA值[46-48]等。本研究主要采用微量元素比值法、CIA值和XRD全岩黏土矿物分析法综合判断倒石头组沉积期古气候特征。
沉积岩中的微量元素受古气候影响,可以在特定的环境下保存[25]。其中喜湿型元素为Cr、Ni、Mn、Cu、Fe、Ba、Br、Co、Cs、Hf、Rb、Sc、Th;喜干型元素为Sr、Pb、Au、As、Ca、Na、Ta、U、Zn、Mg、Mo、B,喜干型元素(Sr)与喜湿型元素(Cu)的比值可以反映古气候[37,49]。Sr/Cu>10指示干旱气候,Sr/Cu<5.0指示潮湿的气候[45]。研究区27件样品Sr/Cu比值为0.69~4.25,平均值为2.09,全部小于5(表1),反映倒石头组沉积期为温暖潮湿的古气候。
沉积岩中易迁移元素与不易迁移元素的比值在重建古风化历史的研究中是十分有效的指标[50],其变化趋势可以定性反映风化作用强度的改变。依据主量元素计算建立多种类型的化学风化指数,可以定量反映化学风化作用的强度和古气候环境[51],其中化学蚀变指数(CIA)可以判断沉积区的化学风化程度和古气候环境[52]。蚀变指数计算公式为CIA=Al2O3/(Al2O3+CaO* +Na2O+K2O)×100%[53]。式中各元素含量通过摩尔分数来计算(表2),CaO*表示硅酸盐中CaO摩尔分数。本文采用McLennan et al. [54]提出的方法对CaO进行校正,若CaO摩尔数小于Na2O摩尔数,则CaO*摩尔数用CaO摩尔数代替;相反,则采用Na2O摩尔数作为CaO*的摩尔分数。利用CIA值对古气候进行研究时需要判断研究区所取样品是否发生了沉积再循环。McLennan et al.[54]指出Th/Sc-Zr/Sc 图解可以指示样品是否发生沉积再循环。Th/Sc-Zr/Sc图解分析显示,研究区样品均未落在沉积再循环指示区域(图6),表明本次研究的样品均为原地沉积,其化学蚀变指数(CIA)可以准确指示原始沉积的气候条件。前人研究指出,CIA值为80~100反映炎热潮湿的热带气候条件下的强烈风化,60~80代表温暖湿润气候条件下的中等风化,50~60 代表寒冷、干燥气候条件下的低等化学风化[53]。研究区样品的CIA值在86.30~99.66之间,平均值为97.14,反映倒石头组沉积期为温暖潮湿的古气候。
黏土矿物晶粒微小,成分结构等在周围环境发生变化时容易发生改变,研究表明黏土矿物的成分和组合是研究古气候和古环境的重要手段[47,54-56]。控制黏土矿物的形成和转化因素有很多,如果在一定时间尺度上没有发生大构造运动,气候条件就是最主要的因素。因此,用黏土矿物研究古气候的变化是可行的。前人研究指出,高岭石的存在指示矿物曾经历了温暖潮湿环境下的强化学风化作用,伊利石、蒙脱石是干燥环境指示矿物[57]。研究区样品全岩黏土矿物分析结果显示,黏土矿物主要为高岭石,其次含有少量的蒙脱石(图7),表明倒石头组黏土岩的沉积环境为温暖潮湿,但在局部一些区域可能表现出相对干燥的特性。
原岩经风化形成的Li元素通常以Li+的形式与卤族元素结合形成可溶性的盐随水溶液迁移[58]。研究区样品CIA值与锂含量呈正相关关系,且当风化程度(CIA值)不断增大,Li元素含量表现出上升趋势(图5d)。这可能是因为Li+在迁移过程中极易被吸附于黏土矿物层间或类质同象置换Mg2+ 等元素进入黏土矿物晶格,从而导致Li 在黏土岩中富集。
3 结论
(1) 元素Sr、Ga和Sr/Ba及U/Th、δU、V/(V+Ni)、V/Cr、U(EF)-Mo(EF)协变模式图指示滇中盆地南缘倒石头组(P1d)富锂黏土岩沉积环境为氧化—弱还原、淡水陆相。Sr/Cu、CIA和全岩黏土矿物XRD分析结果指示富锂黏土岩在形成的过程中,古气候以温暖潮湿为主,且伴随着较为强烈的化学风化作用。
(2) Li元素含量变化与各沉积环境指示参数表明,当沉积环境表现出淡水陆相、氧化、温暖潮湿等特性时,在黏土岩中有利于锂元素的富集。