APP下载

位错密度演化模型的研究进展

2023-04-29雷明雨温斌

燕山大学学报 2023年1期
关键词:塑性变形再结晶微观

雷明雨 温斌

摘 要:

作为材料微观结构状态的一个内部变量,位错密度与材料组织结构演化和力学性能密切相关。金属材料在塑性变形过程中,其位错密度会发生演化。因此,位错密度演化模型的建立是材料组织结构和力学性能研究领域的一个重要课题。本文简要介绍了位错密度的演化规律及其物理机制,综述了当前位错密度演化模型的研究进展,总结了位错密度演化数值计算方法的研究现状,介绍了位错密度对组织结构演化和力学性能的影响规律,探讨了位错密度演化研究的发展趋势。

关键词:

塑性变形;位错密度演化模型;数值计算方法;微观组织结构;力学性能

中图分类号:TU313.2  文献标识码: A  DOI:10.3969/j.issn.1007-791X.2023.01.001

0 引言

材料的性能取决于材料的微观组织结构,材料的微观组织结构又与其前期的加工历程紧密相关。因此,材料加工过程中微观组织结构演化的研究[1-3]不仅对材料性能的研究具有重要的意义[4],而且对指导材料加工工艺的开发研究也具有重要的意义[5-6]。

塑性变形是一种重要的金属材料加工方法[7],而塑性变形的主要载体是位错。在塑性变形过程中,位错会发生增殖等一系列的行为,从而使位错的数量、类型和空间分布等发生演化,进而影响材料的微观组织结构和力学行为。位错密度可以定量反映材料的微观组织结构和力學性能,所以位错密度演化的研究就成为金属材料组织和性能研究的一个关键。因此,许多研究者对位错密度演化进行了研究,并建立了很多位错密度演化模型。例如,K-M模型[8-14]、L-J模型[15-18]、E-K模型[19-21]和位错胞结构模型[22-27]等。除位错密度演化模型外,研究者还通过数值计算的方法对位错密度演化模型进行了研究,例如,有限元模拟方法(Finite Element Method,FEM)[28-32]、元胞自动机模拟方法(Cellular Automata,CA)[33-39]、分子动力学模拟方法(Molecular Dynamic,MD)[40-43]和离散位错动力学模拟方法(Discrete Dislocation Dynamics,DDD)[44-50]等。

无论在位错密度演化模型的建立方面,还是在位错密度数值计算方面,目前的研究已经取得了很大的进展。为了对位错密度演化模型有一个更全面的认识,本文对位错密度演化模型和数值计算方法的研究进展进行系统的综述,对位错密度对组织结构演化和力学性能的影响规律进行总结,并对位错密度演化研究的发展趋势进行探讨。

1 位错密度的定义及实验测定方法

1934年,Taylor,Orowan和Polanyi几乎同时提出了位错的概念[51-54]。随后,位错缺陷被透射电镜实验所证实[55]。作为晶体中的一维缺陷,位错可以认为是已滑移区与未滑移区之间的分界。

1.1 位错密度的定义

为了定量反映材料单位体积内位错的多少,研究者提出了位错密度的概念[56]。位错密度通常被定义为单位体积晶体中位错线的总长度,或单位面积中位错线的数量,因此,位错密度可以表示为

ρ=LV=NlSl=NS,

式中,L为体积为V的晶体中位错线的总长度,V为晶体体积,N为面积为S的晶体截面中的位错数(位错线与观察表面的交点),l为垂直于晶体截面方向的晶体尺寸。

1.2 位错密度的实验测量方法

比较常用的测量位错密度的实验方法是表面腐蚀法(图1(a)[57])。由于位错处的原子处于亚稳态,腐蚀处理后,很容易在位错露头处出现腐蚀坑。所以,将试样切割和打磨后,进行腐蚀,然后统计晶体单位面积内腐蚀坑的数量即可得到位错密度。该方法虽然在操作上简单且成本较低,但是一般仅适用于单晶体位错的测量。此外,表面腐蚀法只能表征特定滑移面的平均位错密度行为,不能解释微观结构的不均匀性,导致测量结果具有随机性,精度较差。

针对宏观区域范围位错密度的测量,还可以采用X射线衍射线性分析法(图1(b)[58]、1(c)[58])。作为一种间接分析方法,因其统计性强的特点,适用范围更广。但当材料的位错密度较低时,由于衍射线宽不明显,会导致结果误差较大。 为此,可通过透射电镜分析法(图1(d)[59])对微观区域的位错密度进行测量。该方法不仅能直观地观测到位错的组态和数量,而且能够解释微观结构的不均匀性。此外,出于操作的简单和便捷性,电子背散射衍射分析法(图1(e)[60]、1(f)[60])也常被应用于测量材料的位错密度。该方法的另一个特点在于能直观地观测并对比不同试样间的位错密度,且精度更高。

2 影响位错密度演化的因素

位错密度作为微观组织状态的内部变量,影响其演化的因素较多,例如应变量[61-63]、温度[64-68]、应变速率[67,69-70]、晶粒尺度[21,71-79]和加载方式等。下面就这些因素对位错密度演化行为的影响做以总结。

2.1 应变量

应变量是影响材料位错密度演化的一个重要因素。在塑性变形开始阶段,金属内部的位错密度较低。初始位错随应变量的增加不断增殖,并与其他位错缠结,直到堆积到材料表面。此时, 由于应变量较小,堆积和缠结的位错很难动态回复,使得位错密度越来越大[61,63]。随应变量的进一步增大,大量塞积的位错会形成很高的形变储能,促进位错的动态回复。回复过程可分为两个方面:一方面是螺型位错的交滑移;另一方面是刃型位错的攀移。因此,当交滑移活跃时,螺型位错密度不再增加,刃型位错密度仍然增加,位错密度的增殖速率减慢。由于塑性变形处于小应变区域,整体的位错密度仍旧处于增加阶段。但是,当达到临界应变量和较高温度条件时,刃型位错攀移作用增加,在晶界及亚晶界处发生动态再结晶[80],使得整体的位错密度降低。此后,塑性变形进入大应变区域,位错密度的增殖速率和回复速率趋于平衡,位错密度进入稳态阶段。

除了轧制、循环变形以外,人们对蠕变过程中的位错组态演化也进行了研究。研究人员发现,由于高温下刃型位错能够攀移,此外蠕变速率一般较低,这就使得蠕变过程中易于形成位错胞结构。因此,位错模式的形成和演化将为蠕变塑性过程的建模提供指导。从位错动力学角度出发,蠕变和塑性变形常被视为一个统一的热激活过程[87]。塑性变形期间位错堆积引起的内应力集中,在随后的蠕变期间以位错攀移的形式释放。随着亚晶粒的形成,变形的阻力逐渐由亚晶界提供。然而,在本质上,蠕变和塑性变形存在差异[94],只是二者存在共同的内在微观机制,这就需要对位错滑移模式和微观物理机制进行更深入的研究。

4.2 元胞自动机模拟方法

元胞自动机是一种广泛使用的数值计算方法,该方法[34,120]通过模拟每个晶粒的微观组织演变,搭建离散的网格动力学模型。变形过程按照固定的规则进行更新,从而预测变形过程中的显微组织演化[121]。如上节所述,有限元模拟方法有效考虑了位错间的相互作用,但未能捕获动态再结晶过程的形态特征。为了解决这些问题,Li等提出了如图6(a)所示的模型构建概念[38],将动态再结晶视为本构行为的一部分,通过元胞自动机与晶体塑性有限元的完全耦合,充分考虑了动态再结晶过程的微观结构演化和多尺度非均匀变形的塑性变形行为,建立了三维的元胞自动机晶体塑性有限元模型,并成功应用于TA15合金。在变形初期,位错主要集中在晶界处。模拟结果表明,随变形量的增加,晶粒内部的位错密度增加。但由于晶粒取向不同,大部分晶粒仍处在位错密度较低的阶段,与实验结果符合得很好。结合K-M模型,Qian和Guo[34]

利用元胞自动机方法研究了HY-100钢的微观组织,成功模拟了塑性变形中的动态再结晶行为,其预测与实验结果吻合得很好。出于元胞自动机方法对高温变形下动态再结晶行为模拟的优势性,通过建立合理的可视化模型(图6(b)[122-123]),能够有效评估再结晶条件下相应的微观结构形态演化和位错密度变化,为揭示材料高温下的变形机制提供了高效途径。

4.3 分子动力学模拟方法

分子动力学模拟方法是以牛顿运动方程和应用力场为基础的计算机模拟方法,可对体系中微观粒子之间的相互作用进行模拟[40]。该方法将位错作为原子动力学的介质,解释了位错介导的塑性极限的原子机制[41]。通过模拟不同变形条件下的应变响应,为材料变形机理的微观尺度研究提供了有效手段。分子动力学模拟方法的优势在于通过建立3D原子模型,能够模拟特定的加工工艺。文献[127]模拟了超细晶纳米镍在三种不同温度下的非对称循环加载变形,如图7所示。

不难看出,温度的变化对位错密度有显著的影响。随温度的升高,原子的扩散增加了位错的运动速率。这有助于相反符号位错的湮灭,使得位错密度降低,材料的流动应力降低。由于其变形过程的复杂性,通过控制原子水平上的结构演化和潜在的变形机制,对纳米镍材料的性能研究具有重要意义。有时,为了得到力学性能良好的工程材料,需要量化材料微观结构在变形中的演化行为[4]。例如,在高位错密度下的加工硬化效应和位错演化导致的晶粒细化,能有效提高材料的强度。但是对于成分复杂的合金材料和相对多道次的加工工艺而言,实验上尚且无法直接观察到其位错的演化过程,这就使得分子动力学模拟方法应用范围更加广泛[6]。分子动力学模拟方法的优势在于能够有效描述微观结构的演化过程,并对小尺寸模型中位错介导的塑性流动的原子尺度观察非常有效。例如:在低温的塑性变形条件下,螺型位错的交滑移作为位错软化行为的重要回复机制,一直是研究的重点问题。Li等[125]利用分子动力学模拟方法,通过模拟原子尺度的热激活过程,直观地观察到了纯铜在低温下的交滑移行为,为理论研究提供了合理的支撑。Yashiro等[126]采用分子动力学方法,对镍基高温合金进行单轴拉伸模拟,通过对自由表面形核的刃型位错、沉淀物对位错的钉扎以及位错间的相互作用等具体细节的分析,揭示了位错成核的新机制,这是实验上很难观测到的。但是由于时间与原子尺度的限制,要在分子动力学模拟中实现与实验过程相近的加载条件几乎是不可能的,这需要非常充裕的计算资源。此外,对于具体化的位错模型搭建、定量插入各种类型的初始位错密度以及位错相互作用机制的调控,分子动力学模拟便很难实现,而离散位错动力学方法的优势便得到了有效地发挥。

4.4 離散位错动力学模拟方法

离散位错动力学模拟是基于Peach-Koehler力的数值计算方法,能够直观地预测位错间的相互作用,进而揭示位错微观结构与塑性行为间的物理联系[127]。Bulatov和Cai[128]对离散位错动力学模拟方法作出了详细的理论解释,对比了各种离散位错动力学数值计算软件,并列举了位错演化现象的相应代码。其中离散位错动力学模拟平台ParaDis因其高效的计算能力,是现阶段较为完善的离散位错动力学模拟软件[44-45]。对于金属材料而言,塑性变形离不开位错之间的相互作用。然而,传统的数值方法很难实现对位错行为的可视化模拟,尤其对于很难定量判断的位错源而言,离散位错动力学方法能够很容易地搭建出满足材料本身特性的位错源条件,使位错主导的变形机制建立在一定的物理基础之上。因此,离散位错动力学方法为微观尺度位错介导的塑性研究提供了桥梁[74]。熊健等[47]提出使用离散位错动力学模拟方法解决位错密度梯度结构的演化过程,并以Cu单晶微柱作为模拟对象,指出了加载方向对位错密度梯度材料力学性能的影响。Sills等[129]利用离散位错动力学模拟了面心立方Cu的应变硬化行为,图8(a)[129]为离散位错动力学模拟中典型的位错微观结构。由于不同连接类型对位错间相互作用的强度贡献存在差异[130],使得塑性变形过程中位错密度的演化速率不同,进而导致剪切应力应变曲线的不同(图8(b)[129]),这对揭示位错密度演化对材料力学性能的影响提供了有效手段。此外,该方法的另一个优势在于:可对不同滑移系内位错密度的演化给出合理预测(图8(c)[131]),有效解决了大部分本构模型由于忽略了滑移系开动的先后顺序而导致的初始应变硬化速率过大的问题。

5 材料组织微观结构和力学性能

位错作为金属材料塑性变形的介质,与材料的强度、屈服、塑性等力学性能密切相关[132]。在金属材料的塑性变形过程中,位错会发生增殖和湮灭等一系列交互作用[106,133],从而使材料中的位错密度发生演化,进而影响材料的微观组织结构和力学行为。通过对位错运动与材料的微观组织结构演化关系的研究,有助于从本质上解释材料的组织和性能变化的物理机制,揭示材料的力学行为[134]。通过对材料微观组织结构的分析,可以有效确定材料的热力学特征、指导材料的加工工艺并保证材料的使用质量。正如上文L-J模型所提到的,在高堆垛层错能材料中,随应变量的增加,加工硬化与动态软化表现出相互竞争的关系。动态回复过程伴随可动位错与弗兰克位错网络中储存的位错相互作用使得位错间发生湮灭,最终导致二者趋于动态平衡。Serajzadeh等[135]给出了热变形期间由于动态回复过程对应的流动应力变化关系:

σ2=[σ2Rec+(σ20-σ2Rec)e-Ωε],

式中,σ,σ0,σRec分别为流动应力,屈服应力和稳态应力,Ω为动态回复系数。

在中等至低堆垛层错能的材料中,位错易发生分解,位错密度降低[136]。新的晶粒在驱动力的作用下逐渐形核长大,表现出动态软化的特征,我们称之为动态再结晶现象。其中,每个动态再结晶晶粒的位错密度和晶粒长大动力学都与动态再结晶过程密切相关。流动应力通过泰勒关系[137],由基体和全部动态再结晶晶粒的平均位错密度值估算得到。动态再结晶对流动应力的影响,可由Avrami方程[138]进行评估,形式如下:

σ=σP-XD(σP-σRex),

其中,σP=αMGbρ为动态再结晶引起的峰值应力,σ为位错的强化因子,

XD=1-exp[-k·(ε-εc/εp)nd]为动态再结晶的体积分数,k和nd为动态再结晶材料参数,εc为发生动态再结晶时的临界应变,εp为峰值应变。

值得注意的是,随应变量的增加,无论动态回复是否同时发生,动态再结晶的开始都对应一个临界的位错密度值[139]。一旦位错密度到达该临界值时,将在晶界或其他内部晶体缺陷处形成新晶粒。因此,对于这种形核机制,临界位错密度的关系式[140]如下:

ρ0c=20S3blmτ21/3,

其中,S为晶界能,l为位错移动的平均自由程,m为晶界的迁移率,τ为位错线的能量。

位错密度为金属材料微观组织演化过程的分析提供了内部条件。通过位错密度演化过程对回复和再结晶过程影响的研究,将微观组织演化与位错的运动联系起来,从而建立材料力学性能与其微观组织结构的相关性。借助于预测得到的微观组织结构和塑性流动行为,可以为实际的生产加工工艺提供合理的参考依据。

此外,为了保证工程构件的安全性,强度是其中一个重要的研究课题。在工业生产中,人们常将关注点放在比原子尺寸范围大的其他缺陷,如杂质、裂缝和疏松等,通过改善这些缺陷提高材料强度。工程中用屈服强度和抗拉强度作为强度指标,但是很难针对强度给出定量精确的预测。因此,有必要从微观尺度出发揭示金属材料应变硬化过程的强度来源,指导材料的加工工艺。从位错理论出发,金属材料的强度与材料中的位错密度状态或位错亚结构直接相关。众所周知,晶粒细化可以有效提高多晶金属的强度。晶粒尺寸作为影响位错密度重要因素之一,可将晶粒尺寸、位错密度和材料强度联系起来。基于晶粒尺寸相关的位错介导塑性研究,El-Awady[72]建立了一个能够反映和预测金属材料机械性能的模型,表达式为

τ/μ=βDρ+αbρ,

式中,β和α为无量纲的常数,D为晶粒尺寸,ρ为位错密度,μ为剪切模量。

图9(a)[72]为四种不同镍单晶尺寸的无量纲解析剪切强度与位错密度的关系图。从图中不难看出,由于完美晶体的位错密度很低,因此其初始强度很高。随可动位错的移动和增殖,材料的强度表现出下降的趋势。但当位错密度达到某一临界值时,变形机制转变为林硬化模式,较高的位错密度使得位错缠结阻碍运动,持续的变形会增加材料强度,所以位错密度和材料强度之间存在非常大的相关性[141]。

此外,材料强度还可通过位错密度、應变速率建立起联系。在可动位错密度的演化过程中,由于加载路径和应变速率的差异,很难给出合理的预测。为此,Fan等[142]采用离散位错动力学模拟和分子动力学模拟,揭示了应变率和位错密度对铜及铝单晶强度的影响。如图9(b)[142]所示,在高应变率(或低位错密度)下,材料的强度主要受到应变率硬化行为的影响,在低应变率(或高位错密度下)主要受到林位错硬化行为的控制。通过模拟结果得到了无量纲屈服应力的最小值点,由于林位错硬化应力正好是应变率硬化应力的二倍,通过解析关系推导出了二者转变的临界位错密度公式,如下:

ρc=2BαMfaGb32/3

式中,B为阻尼系数,为应变速率,fa为比例系数。

在工程实际中,尤其是材料加工过程中,如何在较大程度上保证金属材料具有一定强度的前提下,依然兼备良好的塑性,一直是人们关注的焦点[143]。图10[144]为金属材料强度和延展性间的权衡关系图。不难看出,相对较高的应变硬化能力是避免强度-延展性协调作用的关键。在试样受到机械应力作用时,材料通常先表现为弹性变形。当应力达到屈服极限后,材料出现塑性变形现象。这将导致试样在最薄弱处出现颈缩[104],截面面积减少直至断裂。该点的应变称为断裂应变,即为对材料延展性的测量。这是由塑性不均匀造成的,发生颈缩的不稳定性始于:

dσdε+mσ≤σ,

式中,σ为真实应力,ε为真实应变,m为应变率敏感系数。

金属材料的塑性行为与晶体中位错的运动相关,这些位错在非弹性变形过程中产生、储存和移动。当施加的外力超过屈服点后,材料进入塑性变形阶段,晶体材料的流动应力由各部分贡献[5],如下:

τ=τ0+τR+τρ+τ*,

其中,τ0,τR,τ*,τρ分别为晶格摩擦应力,位错源激活应力,应变速率相关的有效应力和位错间的相互作用力。

综上所述,位错密度作为材料微观结构状态的一个内部变量,与材料组织结构演化和力学性能密切相关。因此,有必要对位错密度演化的全过程有一个总体的理解,建立合理的位错密度演化模型,指导材料的制备工艺。

6 总结与展望

阐明位错密度演化规律及其物理机制,建立可定量描述位错密度演化的模型,对材料性能的研究和材料加工工艺的开发具有重要的意义。本文综述了当前位错密度演化模型的研究进展,总结了位错密度演化数值计算方法的研究现状,特别介绍了位错密度对材料组织结构演化和力学性能的影响因素。

到目前为止,位错密度演化模型的研究已经取得了很大的进展,但仍然存在许多问题。在理论方面,现有的位错密度演化模型不仅在物理过程的考虑角度存在差异,而且在状态参数的选择和数量方面也存在差异。这就导致模型仅适

用于特定的材料和

加载条件,模型中的材料常数严重依赖于实验数据的拟合参考值。虽然结合数值模拟手段,为一些特定的“经验参数”提供了较为合理的参考值,但是从本质上讲,由于缺少对位错密度演化全过程较为综合的微观物理机制的研究,绝大多数已建立的模型仍处于定性和半定量阶段。潜在的物理过程大大限制了模型的有效范围,也阻碍和影响了新材料力学性能的设计。

实际上,金属材料的塑性变形是位错滑移、位错交互和位错湮灭在以滑移平面和伯氏矢量为特征的特定滑移系统上相互作用的结果。因此,位错密度的变化决定了金属的应力-应变行为。为了解决这一问题,需要从微观尺度出发,探索位错密度演化过程的物理机制,建立适用于更广泛加工条件范围的统一模型。在此,我们提出对现有模型的改进建议如下:

1) 基于应用范围较为广泛的位错胞结构模型,首先按空间分布将总的位错密度划分为可动位错密度、胞内不可动位错密度和胞壁不可动位错密度三个内部状态变量。此外,由于刃型位错在高温下受扩散攀移机制控制,而螺型位错在低温下受交滑移机制影响,二者在具体计算中存在差异,故而有必要在这种复合结构模型中,额外划分螺型位错分量和刃型位错分量,并具体分析不同位错类型对位错密度演化行为的影响。

2) 层错作为金属和合

金中的面缺陷,很大程度上决定了它们的力学行为。层错能的大小直接影响扩展位错间的距离,从而改变位错交滑移的概率。对于低层错能材料,扩展位错宽度大,当位错遇到势垒(空位、位错、晶界等)时,位错很难通过交滑移和攀移继续移动,从而减缓了因交滑移而导致的位错湮灭。此时,位错的回复速率较低,总位错密度能够达到动态再结晶的临界位错密度值,演化曲线表现出动态再结晶趋势。相反,材料表现出回复趋势。因此,通过考虑层错能的直接影响,可以进一步改进位错密度演化模型。

3) 对于通常表现为非均匀相的合金材料而言,固溶体基体中包含的第二相会阻碍到位错的运动,因此有必要考虑固溶体硬化和沉淀硬化对位错密度演化行为的影响。

4) 在金属材料的塑性变形初期,金属内部的滑移系统不一定全部开动,先开动的滑移面上的位错密度较大。随应变量的增加,晶体发生转动、位错间的交滑移機制导致其他滑移系相继开动,最终使得整个晶体内部的位错密度升高到相同的水平。因此考虑滑移系开动的先后顺序,有助于模拟出更符合实验结果的位错密度演化曲线。

5) 金属材料在疲劳、剪切、拉伸、轧制、蠕变和循环等变形过程中的位错组态存在差异。大致表现为高低位错密度相间出现的空间有序结构,即脉、墙、迷宫和位错胞。在材料的变形过程中,位错解离、结合、滑移、交滑移和攀移等机制都是活跃的。因此,通过不同加载方式分析不同类型位错模式的形成机制,有助于揭示位错密度演化过程的微观物理机制和最终形成的微观结构。

参考文献

[1] BONTCHEVA N,PETZOV G.Microstructure evolution during metal forming processes [J].Computational Materials Science,2003,28(3/4):563-573.

[2] SU J Q,NELSON T W,STERLING C J.Microstructure evolution during FSW/FSP of high strength aluminum alloys [J].Materials Science and Engineering:A,2005,405(1/2):277-286.

[3] KIM S D,PARK J Y,PARK S J,et al.Direct observation of dislocation plasticity in high-Mn lightweight steel by in-situ TEM [J].Scientific Reports,2019,9(1):1-13.

[4] LI J,FANG Q,LIU B,et al.Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation [J].RSC Advances,2016,6(80):76409-76419.

[5] ZHOU W,REN X,YANG Y,et al.Dislocation behavior in nickel and iron during laser shock-induced plastic deformation [J].The International Journal of Advanced Manufacturing Technology,2020,108(4):1073-1083.

[6] VIJAY REDDY K,PAL S.Structural evolution and dislocation behaviour during nano-rolling process of FCC metals:a molecular dynamics simulation based investigation [J].Journal of Applied Physics,2019,125(9):095101.

[7] KOVCS I,ZSOLDOS L.Dislocations and plastic deformation [M].Oxford:Pergamon Press,2016:252-281.

[8] MECKING H,KOCKS U F.Kinetics of flow and strain-hardening [J].Acta Metallurgica,1981,29(11):1865-1875.

[9] KOCKS U F.Laws for work-hardening and low-temperature creep [J].Journal of Engineering Materials and Technology,1976,98(1):76-85.

[10] KOCKS U F,MECKING H.A mechanism for static and dynamic recovery [M].Oxford:Pergamon Press,1979:345-350.

[11] MECKINGS H,KOCKS U F.Kinecits of flow and strain-hardening [J].Acta Metallurgica,1981,29(11):1865-1875.

[12] ESTRIN Y,MECKING H.A unified phenomenological description of work hardening and creep based on one-parameter models [J].Acta Metallurgica,1984,32(1):57-70.

[13] MALYGIN G A.Dislocation density evolution equation and strain hardening of f.c.c crystals [J].Physica Status Solidi (A),1990,119(2):423-436.

[14] KOCKS U F,MECKING H.Physics and phenomenology of strain hardening:the FCC case [J].Progress in Materials Science,2003,48(3):171-273.

[15] LAASRAOUI A,JONAS J J.Prediction of steel flow stresses at high temperatures and strain rates [J].Metallurgical Transactions A,1991,22(7):1545-1558.

[16] YOSHIE A,MORIKAWA H,ONOE Y.Formulation of static recrystallizatio of austenite in hot rolling process of steel plate [J].Transactions of the Iron and Steel Institute of Japan,1987,27(6):425-431.

[17] BERGSTRM Y.A dislocation model for stress-strain behaviour of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocation [J].Materials Science and Engineering,1970,5(4):193-200.

[18] GOURDET S,MONTHEILLET F.A model of continuous dynamic recrystallization [J].Acta Materialia,2003,51(9):2685-2699.

[19] ESTRIN Y,KUBIN L P.Local strain hardening and onuniformity of plastic deformation [J].Acta Merallurgica,1986,34(12):2455-2464.

[20] SCHLIPF J.Stable and unstable modes in tensile deformation [J].Materials Science and Engineering,1986,77(1):19-26.

[21] ESTRIN Y.Unified constitutive laws of plastic deformation [M].New York:Academic Press,1996:69-106.

[22] ROTERS F,RAABE D,GOTTSTEIN G.Work hardening in heterogeneous alloys-a microstructural approach based on three internal state variables [J].Acta Materialia,2000,48(17):4181-4189.

[23] ROTERS F.A new concept for the calculation of the mobile dislocation density in constitutive models of strain hardening [J].Physica Status Solidi (B),2003,240(1):68-74.

[24] ESTRIN Y,TTH L S,MOLINARI A,et al.A dislocation-based model for all hardening stages in large strain deformation [J].Acta Materialia,1998,46(15):5509-5522.

[25] PRINZ F B,ARGON A S.The evolution of plastic resistance in large strain plastic flow of single phase subgrain forming metals [J].Acta Metallurgica,1984,32(7):1021-1028.

[26] NIX W D,GIBELING J C,HUGHES D A.Time-dependent deformation of metals [J].Metallurgical Materials Transactions A,1985,16(12):2215-2226.

[27] TTH L S,MOLINARI A,ESTRIN Y,et al.Strain hardening at large strains as predicted by dislocation based polycrystal plasticity model [J].Journal of Engineering Materials and Technology,2002,124(1):71-77.

[28] BAIK S C,ESTRIN Y,KIM H S,et al.Dislocation density-based modeling of deformation behavior of aluminium under equal channel angular pressing [J].Materials Science and Engineering: A,2003,351(1/2):86-97.

[29] MA A,ROTERS F,RAABE D.A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations [J].Acta Materialia,2006,54(8):2169-2179.

[30] MA A,ROTERS F,RAABE D.A dislocation density based constitutive law for BCC materials in crystal plasticity FEM [J].Computational Materials Science,2007,39(1):91-95.

[31] ALANKAR A,MASTORAKOS I N,FIELD D P.A dislocation-density-based 3D crystal plasticity model for pure aluminum [J].Acta Materialia,2009,57(19):5936-5946.

[32] LEE D J,YOON E Y,AHN D H,et al.Dislocation density-based finite element analysis of large strain deformation behavior of copper under high-pressure torsion [J].Acta Materialia,2014,76(1):281-293.

[33] 李殿中,杜强,胡志勇,等.金属成形过程组织演变的Cellular Automaton模拟技术 [J].金属学報,1999,35(11):1201-1205.

LI D Z,DU Q,HU Z Y,et al.Simulation of the microstructure evolution in metal forming by using cellular automation method [J].Acta Metallurgica Sinica,1999,35(11):1201-1205.

[34] QIAN M,GUO Z X.Cellular automata simulation of microstructural evolution during dynamic recrystallization of an HY-100 steel [J].Materials Science and Engineering:A,2004,365(1/2):180-185.

[35] 何燕,张立文,牛静,等.元胞自动机方法对动态再结晶过程的模拟 [J].材料热处理学报,2005,26(4):120-124.

HE Y,ZHANG L W,NIU J,et al.Simulation of dynamic recrystallization process using cellular automata [J].Transactions of Materials and Heat Treatment,2005,26(4):120-124.

[36] 刘筱,朱必武,李落星.Laasraoui-Jonas 位错密度模型结合元胞自动机模拟AZ31镁合金动态再结晶 [J].中国有色金属学报,2013,23(1):898-904.

LIU X,ZHU B W,LI L X.Dynamic recrystallization of AZ31 magnesium alloy simulated by Laasraoui-Jonas dislocation equation coupled cellular automata method [J].The Chinese Journal of Nonferrous Metals,2013,23(1):898-904.

[37] 韓亚玮,苏娟华,任凤章,等.应用Laasraoui-Jonas 位错密度模型模拟工业纯钛微观组织演变 [J].材料热处理学报,2014,35(1):210-214.

HAN Y W,SU J H,REN F Z,et al.Simulation of microstructure evolution of hot-deformed commercial pure titanium by Laasraoui-Jonas dislocation density model [J].Transactions of Materials and Heat Treatment,2014,35(1):210-214.

[38] LI H,SUN X,YANG H.A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation,DRX microstructural evolution and mechanical responses in titanium alloys [J].International Journal of Plasticity,2016,87:154-80.

[39] 陈学文,张亚东,王纳纳,等.基于 L-J 位错密度模型及CA 法的45Cr4NiMoV合金动态再结晶行为 [J].材料热处理学报,2017,38(7):167-172.CHEN X W,ZHANG Y D,WANG N N,ZHANG X D.Dynamic recrystallization behavior of 45Cr-4NiMoV alloy based on L-J dislocation density model and CA  method[J].Journal of Material Heat Treatment,2017,38(7):167-172.

[40] ANDERSEN H C.Molecular dynamics simulations at

constant pressure and/or temperature [J].The Journal of Chemical Physics,1980,72(4):2384-2393.

[41] ZEPEDA-RUIZ L A,STUKOWSKI A,OPPELSTRUP

T,et al.Probing the limits of metal plasticity with molecular dynamics simulations [J].Nature,2017,550(7677):492-495.

[42] TEMITOPE OYINBO S T,JEN T C.Molecular

dynamics simulation of dislocation plasticity mechanism of nanoscale ductile materials in the cold gas dynamic spray process [J].Coatings,2020,10(11):1079.

[43] ZHANG Y,JIANG S,ZHU X,et al.Influence of void

density on dislocation mechanisms of void shrinkage in nickel single crystal based on molecular dynamics simulation [J].Physica E:Low-dimensional Systems and Nanostructures,2017,90:90-97.

[44] BULATOV V V,HSIUNG L L,TANG M,et al.

Dislocation multi-junctions and strain hardening [J].Nature,2006,440(7088):1174-1178.

[45] ARSENLIS A,CAI W,TANG M,et al.Enabling strain

hardening simulations with dislocation dynamics [J].Modelling and Simulation in Materials Science and Engineering,2007,15(6):553-595.

[46] LIN B,HUANG M,ZHAO L,et al.3D DDD modelling of dislocation-precipitate interaction in a nickel-based single crystal superalloy under cyclic deformation [J].Philosophical Magazine,2018,98(17):1550-1575.

[47] 熊健,魏德安,陆宋江,等.位错密度梯度结构Cu

单晶微柱压缩的三维离散位错动力学模拟 [J].金属学报,2019,55(11):1477-86.

XIONG J,WEI D A,LU S J,et al.A three-dimensional discrete dislocation dynamics simulation on micripillar compression of single crystal copper with dislocation density gradient [J].Acta Metallurgica Sinica,2019,55 (11):1477-1486.

[48] SUDMANNS M,STRICKER M,WEYGAND D,et al.

Dislocation multiplication by cross-slip and glissile reaction in a dislocation based continuum formulation of crystal plasticity [J].Journal of the Mechanics and Physics of Solids,2019,132:103695.

[49] MINSHENG H,SONG H,SHUANG L,et al.Discrete

dislocation dynamics algorithms and their application in modeling of plastic behaviors of crystalline materials [J].Chinese Science Bulletin,2019,64(18):1864-1877.

[50] LI D,ZBIB H,SUN X,et al.Predicting plastic flow

and irradiation hardening of iron single crystal with mechanism-based continuum dislocation dynamics [J].International Journal of Plasticity,2014,52:3-17.

[51] OROWAN E. Zur kristallplastizitt. i[J]. Zeitschrift für Physik, 1934, 89(9): 605-613.

[52] OROWAN E. Zur kristallplastizitt. iii[J].Zeitschrift für Physik, 1934, 89(9):634-659.

[53] TAYLOR G I. The mechanism of plasticdeformation of crystals. Part I—Theoretical[J]. Proceedings of theRoyal Society of London, 1934, 145(855): 362-387.

[54] POLANYI M.ber eine Art Gitterstrung, die einen Kristall plastisch machen knnte[J]. Zeitschrift für Physik,1934, 89(9): 660-664.

[55] WHELAN M J,HIRSCH P B,HORNE R W,et al.

Dislocations and stacking faults in stainless steel [J].Proceedings of the Royal Society of London Series A. Mathematical and Physical Sciences,1957,240(1223):524-538.

[56] HAM R K.The determination of dislocation densities

in thin films [J].Philosophical Magazine,1961,6(69):1183-1184.

[57] LU D,WU M.Observation of etch pits in Fe-36wt%

Ni Invar alloy [J].International Journal of Minerals,Metallurgy and Materials,2014,21(7):682-686.

[58] 張鹏,陈诚,袁武华.应变速率对7050铝合金性能

的影响及强化机理 [J].锻压技术,2021,46(10):225-232.

ZHANG P,CHEN C,YUAN W H.Influence of strain rate on properties for 7050 aluminum alloy and strengthening mechanism [J].Forging and Stamping Technology,2021,46 (10):225-232.

[59] PEICˇKA J,KUEL R,DRONHOFER A,et al.The

evolution of dislocation density during heat treatment and creep of tempered martensite ferritic steels [J].Acta Materialia,2003,51(16):4847-4862.

[60] BERECZ T,JENEI P,CSRA,et al.Determination

of dislocation density by electron backscatter diffraction and X-ray line profile analysis in ferrous lath martensite [J].Materials Characterization,2016,100(113):117-124.

[61] 何進,何建丽,陈飞.应变量对WE43镁合金微观

组织演变及力学性能的影响 [J].锻压技术,2020,45(6):182-189.

HE J,HE J L,CHEN F.Influence of strain on microstructure evolution and mechanical properties for WE43 magnesium alloy [J].Forging and Stamping Technology,2020,45(6):182-189.

[62] 陈欢,孙新军,王小江.晶粒尺寸与应变量对高锰

奥氏体钢加工硬化行为的影响 [J].金属热处理,2018,43(11):31-37.

CHEN H,SUN X J,WNAG X J.Effect of grain size and strain on work hardening behavior of high manganese austenitic steel [J].Heat Treatment of Metals,2018,43(11):31-37.

[63] 陈铭森,韩靖,陈霞,等.不同应变量对7A04铝

合金包申格效应的影响 [J].热加工工艺,2015,44(6):53-55.

CHEN M S,HAN J,CHEN X,et al.Effect of strain capacities on Bauschinger effect of 7A04 aluminum alloy [J].Hot Working Technology,2015,44(6):53-55.

[64] JIANG J,JIANG F,ZHANG M,et al.Al3(Sc,Zr)

precipitation in deformed Al-Mg-Mn-Sc-Zr alloy:effect of annealing temperature and dislocation density [J].Journal of Alloys and Compounds,2020,831:154856.

[65] SAASTAMOINEN A,KAIJALAINEN A,PORTER D,

et al.The effect of finish rolling temperature and tempering on the microstructure,mechanical properties and dislocation density of direct-quenched steel [J].Materials Characterization,2018,139:1-10.

[66] ZAMANI M,DINI H,SVOBODA A,et al.A

dislocation density based constitutive model for as-cast Al-Si alloys:effect of temperature and microstructure [J].International Journal of Mechanical Sciences,2017,100(121):164-170.

[67] LEE W S,LIU C Y.The effects of temperature and

strain rate on the dynamic flow behaviour of different steels [J].Materials Science and Engineering:A,2006,426(1/2):101-113.

[68] GOETZ R L,SEMIATIN S L.The adiabatic correction

factor for deformation heating during the uniaxial compression test [J].Journal of Materials Engineering and Performance,2001,10(6):710-717.

[69] MATAYA M C,SACKSCHEWSKY V E.Effect of

internal heating during hot compression on the stress-strain behavior of alloy 304L [J].Metallurgical and Materials Transactions A,1994,25(12):2737-2752.

[70] GILBERT A, WILCOX B A, HAHN G T. The effect of strain rate on dislocation multiplication in polycrystalline molybdenum[J]. Philosophical Magazine, 1965, 12(117): 649-653.

[71] ROHITH P,SAINATH G,SRINIVASAN V S.Effect

of size,temperature and strain rate on dislocation density and deformation mechanisms in Cu nanowires [J].Physica B:Condensed Matter,2019,561:136-140.

[72] EL-AWADY J A.Unravelling the physics of size-

dependent dislocation-mediated plasticity [J].Nature Communications,2015,6(1):1-9.

[73] SHI J,ZIKRY M A.Grain size,grain boundary sliding,

and grain boundary interaction effects on nanocrystalline behavior [J].Materials Science and Engineering:A,2009,520(1/2):121-133.

[74] CHIA K,JUNG K,CONRAD H.Dislocation density

model for the effect of grain size on the flow stress of a Ti-15.2 at.% Mo β-alloy at 4.2-650K [J].Materials Science and Engineering:A,2005,409(1/2):32-38.

[75] CONRAD H.Grain-size dependence of the flow stress of Cu from millimeters to nanometers [J].Metallurgical and Materials Transactions A,2004,35(9):2681-2695.

[76] HANSEN N.Polycrystalline strengthening [J].

Metallurgical Transactions A,1985,16(12):2167-2190.

[77] SIM G D,KIM G,LAVENSTEIN S,et al.Anomalous

hardening in magnesium driven by a size-dependent tr ansition in deformation modes [J].Acta Materialia,2018,144:11-20.

[78] GRACIO J J.The double effect of grain size on the

work hardening behaviour of polycrystalline copper [J].Scripta Metallurgica et Materiallia,1994,31(4):487-489.

[79] GRACIO J J,FERNANDES J V,SCHMITT J H.Effect

of grain size on substructural evolution and plastic behaviour of copper [J].Materials Science and Engineering:A,1989,118:97-105.

[80] MOMENI A,DEHGHANI K,EBRAHIMI G R.

Modeling the initiation of dynamic recrystallization using a dynamic recovery model [J].Journal of Alloys and Compounds,2011,509(39):9387-9393.

[81] AMIN H A,VOYIADJIS G Z.Effect of strain rate on

the dynamic hardness in metals [J].Journal of Engineering Materials and Technology,2007,129(4):505-512.

[82] 李周兵,沈健,閆亮明,等.应变速率对7055铝合

金显微组织和力学性能的影响 [J].稀有金属,2010,34(5):643-7.

LI Z B,SHEN J,YAN L M,et al.Influence of hot process strain rate on microstructures and tensile properties of 7055 aluminum alloy [J].Chinese Journal of Rare Metals,2010,34(5):643-647.

[83] ZHENG R,DU J P,GAO S,et al.Transition of

dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J].Acta Materialia,2020,198(1):35-46.

[84] PIETRZYK M,CSER L,LENARD J.Mathematical

and physical simulation of the properties of hot rolled products [M].Amsterdam:Elsevier Press,1999:85-104.

[85] LI P,LI S X,WANG Z G,et al.Fundamental factors on

formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals [J].Progress in Materials Science,2011,56(3):328-377.

[86] ESTRIN Y,BRAASCH H,BRECHET Y.A dislocation

density based constitutive model for cyclic deformation [J].Journal of Engineering Materials and Technology,1996,118(4):441-447.

[87] SANDSTRM R,HALLGREN J.The role of creep in

stress strain curves for copper [J].Journal of Nuclear Materials,2012,422(1/2/3):51-57.

[88] ZHOU H,KONG Q P.The generation rate of

dislocations during creep evaluated by the method of dynamic internal friction [J].Scripta Materialia,1996,34(2):269-274.

[89] PIETRZYK M,LENARD J G.Deformation heating

during cold rolling of aluminum strips [J].Journal of Engineering Materials and Technology,1991,113(1):69-73.

[90] HE X,YAO Y.A dislocation density-based viscoplas

ticity model for cyclic deformation:application to P91 steel [J].International Journal of Applied Mechanics,2018,10(5):1850055.

[91] LI P,LI S X,WANG Z G,et al.Unified factor control

ling the dislocation evolution of fatigued face-centered cubic crystals [J].Acta Materialia,2017,129:98-111.

[92] ZECEVIC M,KNEZEVIC M.A dislocation density

based elasto-plastic self-consistent model for the prediction of cyclic deformation:application to AA6022-T4 [J].International Journal of Plasticity,2015,72:200-217.

[93] WU X M,WANG Z G,LI G Y.Cyclic deformation and

strain burst behavior of Cu-7at.% Al and Cu-16at.% Al single crystals with different orientations [J].Materials Science and Engineering:A,2001,314(1/2):39-47.

[94] PREUNER J,RUDNIK Y,BREHM H,et al.A

dislocation density based material model to simulate the anisotropic creep behavior of single-phase and two-phase single crystals [J].International Journal of Plasticity,2009,25(5):973-994.

[95] BERGSTRM Y.HALLN H.An improved

dislocation model for the stress-strain behaviour of polycrystalline α-Fe [J].Materials Science and Engineering,1982,55(1):49-61.

[96] KREYCA J F.State parameter based modelling of

stress-strain curves in aluminium alloys [D].Vienna:Vienna University of Technology,2017.

[97] ASHBY M F.The deformation of plastically non-

homogeneous materials [J].The Philosophical Magazine:A Journal of Theoretical Experimental and  Applied Physics,2006,21(170):399-424.

[98] KARHAUSEN K F,ROTERS F.Development and

application of constitutive equations for the multiple-stand hot rolling of Al-alloys [J].Journal of Materials Processing Technology,2002,123(1):155-166.

[99] PRINZ F B,ARGON A S.The evolution of plastic

resistance in large strain plastic flow of single phase subgrain forming metals [J].Acta Matalluriga 1984, 32(7):1021-1028.

[100] MONTHEILLET F,LURDOS O,DAMAMME G.A

grain scale approach for modeling steady-state discontinuous dynamic recrystallization [J].Acta  Materialia,2009,57(5):1602-1612.

[101] GOURDET S,MONTHEILLET F.Effects of

dynamic grain boundary migration during the hot compression of high stacking fault energy metals [J].Acta Materialia,2002,50(11):2801-2812.

[102] HUNTER A, PRESTON D L. Analytic model of dislocation density evolution in fcc polycrystals accounting for dislocation generation, storage, and dynamic recovery mechanisms[J]. International Journal of Plasticity, 2022, 151: 103178.

[103] ESTRIN Y. Dislocation-density-related

constitutive modeling[M]// KRAUSS A S.Unified constitutive laws of plastic deformation. New York:Academic Press Inc., 1996: 69-106.

[104] NABARRO F R N.Work hardening and dynamical

recovery of f.c.c.metals in multiple glide [J].Acta Metallurgica,1964,37(6):1521-1546.

[105] GOETZ R L,SEETHARAMAN V.Modeling

dynamic recrystallization using cellular automata [J].Scripta Materialia,1998,38(3):405-413.

[106] ESSMANN U,MUGHRABI H.Annihilation of

dislocations during tensile and cyclic deformation and limits of dislocation densities [J].Philosophical Magazine A,1979,40(6):731-756.

[107] SANDSTRM R,LAGNEBORG R.A controlling

factor for dynamic recrystallisation [J].Scripta Metallurgica,1975,9(1):59-66.

[108] ESTRIN Y, KUBIN L P. Plastic instabilities: phenomenology and theory[J]. Materials Science and Engineering: A, 1991, 137(15): 125-134.

[109] REYNE B, MANACH P Y, MOES N. Macroscopic consequences of Piobert-Lüders and Portevin-Le Chatelier bands during tensile deformation in Al-Mg alloys[J] Materials Science and Engineering: A, 2019, 746: 187-196.

[110] KUBIN L P, ESTRIN Y. Evolution of dislocation densities and the critical conditions for the Portevin-Le Chatelier effect[J]. Acta Metallurgica et Materialia, 1990, 38(5): 697-708.

[111] HART E W.Theory of the tensile test [J].Acta Metallurgica,1967,15(2):351-355.

[112] WANG Z,BEYERLEIN I,LESAR R.Plastic anisitro

py in fcc single crystals in high rate deformation [J].International Journal of Plasticity,2009,25(1):26-48.

[113] LI J,YI M,WU H,et al.Fine-grain-embedded dislocation-cell structures for high strength and ductility in additively manufactured steels [J].Materials Science  and Engineering:A,2020,790:139736.

[114] MUGHRABI H.Dislocation wall and cell structures

and long-range internal stress in deformation matal crystals [J].Acta Metallurgica,1983,31(9):1367-1379.

[115] MA A,ROTERS F.A constitutive model for fcc single

crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals [J].Acta Materialia,2004,52(12):3603-3612.

[116] 潘金生,仝健民,田民波.材料科學基础(修订版)[M].北京:清华大学出版社,2011:177-180.

PAN J S,TONG J M,TIAN M B.Fundamentals of materials science(revised) [M].Beijing:Tsinghua University Press,2011:177-180.

[117] ROTERS F,EISENLOHR P,HANTCHERLI L,et al.

Overview of constitutive laws,kinematics,homogenization and multiscale methods in crystal plasticity finite-element modeling:theory,experiments,applications [J].Acta Materialia,2010,58(4):1152-1211.

[118] WEBER F,SCHESTAKOW I,ROTERS F,et al.

Texture evolution during bending of a single crystal copper nanowire studied by EBSD and crystal plasticity finite element simulations [J].Advanced Engineering Materials,2008,10(8):737-741.

[119] HARDER J.A crystallographic model for the study of

local deformation processes in polycrystals [J].International Journal of Plasticity,1998,15(6):605-624.

[120] HESSELBARTH H W,GBEL I R.Simulation of

recrystallization by cellular automata [J].Acta Metallmater,1991,39(9):2135-2143.

[121] DING R,GUO Z X.Coupled quantitative simulation

of microstructural evolution and plastic flow during dynamic recrystallization [J].Acta Materialia,2001,49(16):3163-3175.

[122] MADEJ L,SITKO M,LEGWAND A,et al.

Development and evaluation of data transfer protocols in the fully coupled random cellular automata finite element model of dynamic recrystallization [J].Journal of Computational Science,2018,26:66-77.

[123] SITKO M,PIETRZYK M,MADEJ L.Time and

length scale issues in numerical modelling of dynamic recrystallization based on the multi space cellular automata method [J].Journal of Computational Science,2016,16:98-113.

[124] PAL S,GURURAJ K,MERAJ M,et al.Molecular

dynamics simulation study of uniaxial ratcheting behaviors for ultrafine-grained nanocrystalline nickel [J].Journal of Materials Engineering and Performance,2019,28(8):4918-4930.

[125] LI M,CHU W Y,GAO K W.Molecular dynamics

simulation of cross-slip and the intersection of dislocations in copper [J].Journal of Physics:Condensed Matter,2003,15(20):3391.

[126] YASHIRO K,NAITO M,TOMITA Y.Molecular

dynamics simulation of dislocation nucleation and motion at γ/γ′ interface in Ni-based superalloy [J].International Journal of Mechanical Sciences,2002,44(9):1845-1860.

[127] PEACH M,KOEHLER J S.The forces exerted on

dislocations and the stress fields produced by them [J].Physical Review,1950,80(3):436-439.

[128] BULATOV V,CAI W.Computer simulations of dislocations [M].Oxford:Oxford University Press,2006:196-240.

[129] SILLS R B,BERTIN N,AGHAEI A,et al.

Dislocation networks and the microstructural origin of

strain hardening [J].Physical Review Letters,2018,

121(8):085501.

[130] DEVINCRE B,HOC T,KUBIN L.Dislocation mean

free paths and strain hardening of crystals [J].Science,2008,320(5884):1745-1748.

[131] HUSSEIN A M,EL-AWADY J A.Quantifying

dislocation microstructure evolution and cyclic hardening in fatigued face-centered cubic single crystals [J].Journal of the Mechanics and Physics of Solids,2016,91:126-144.

[132] 陶正耀.材料強度及其影响因素[J].机械工程材料,1982(1):35-40.

TAO Z Y.Material strength and its influencing factors [J].Mechanical Engineering Materials,1982(1):35-40.

[133] REID C N,GILBERT A,ROSENFIELD A R.

Dislocation multiplication [J].Philosophical Magazine,1965,12(116):409-412.

[134] SHANTHRAJ P,ZIKRY M A.Dislocation density

evolution and interactions in crystalline materials [J].Acta Materialia,2011,59(20):7695-7702.

[135] SERAJZADEH S,TAHERI A K.Prediction of flow

stress at hot working condition [J].Mechanics Research Communications,2003,30(1):87-93.

[136] SAKAI T,JONAS J J.Overview no.35 dynamic

recrystallization:mechanical and microstructural considerations [J].Acta Metallurgica,1984,32(2):189-209.

[137] TAYLOR G I.Plastic strain in metals [J].The Journal of the Institute of Metals,1938,62:307-324.

[138] SELLARS C M,WHITEMAN J A.Recrystallization and grain growth in hot rolling [J].Metal Science,1979,13(3/4):187-194.

[139] ROBERTS W,AHLBLOM B.A nucleation criterion for dynamic recrystallization during hot working [J].Acta Metallurgica,1978,26(5):801-813.

[140] DING R,GUO Z X.Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization [J].Acta Materialia,2001,49(16):3163-3175.

[141] SEEGER A,DIEHL J,MADER S,et al.Work-hardening and work-softening of face-centred cubic metal crystals [J].Philosophical Magazine,1957,2(15):323-350.

[142] FAN H,WANG Q,EL-AWADY J A,et al.Strain rate dependency of dislocation plasticity [J].Nature Communications,2021,12(1):1-11.

[143] MA E.Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys [J].Nanostructured Materials,2006,58(4):49-53.

[144] MA E,ZHU T.Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J].Materials Today,2017,20(6):323-331.

Research progress of dislocation density evolution models

LEI Mingyu,WEN Bin

(State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao,Hebei 066004,China)

Abstract:

As an internal variable of microstructure,dislocation density is closely related to microstructure evolution and mechanical properties.During the process of plastic deformation of metal materials,the dislocation density will evolve.Therefore,the establishment of dislocation density evolution model is an important topic in the field of microstructure and mechanical properties of materials.In this review paper,the evolution of dislocation density and its physical mechanism are briefly introduced.The research progress of dislocation density evolution model is reviewed.The research status of numerical calculation method of dislocation density evolution is summarized.The influence law of dislocation density on mechanical properties is explained.Finally,the development trend of dislocation density evolution research is discussed in detail.

Keywords:

plastic deformation;dislocation density evolution model;numerical calculation method;microstructure;mechanical properties

猜你喜欢

塑性变形再结晶微观
剧烈塑性变形制备的纳米金属材料的力学行为
一种新的结合面微观接触模型
高速切削Inconel718切屑形成过程中塑性变形研究
空化水喷丸工艺诱导塑性变形行为的数值模拟
常化工艺对低温Hi-B钢初次及二次再结晶的影响
铸态30Cr2Ni4MoV钢动态再结晶行为研究
微观的山水
Cu元素对7XXX 系列铝合金再结晶的影响
Q460GJE钢形变奥氏体的动态再结晶行为研究
微观中国