APP下载

婆婆纳抗黑色素瘤物质基础的初步研究

2023-03-13张远芳李玲环彭忠禄王俊杰

广西植物 2023年1期
关键词:柱层析黑色素瘤乙酸乙酯

刘 芳, 张远芳, 李玲环, 彭忠禄, 王俊杰*

( 1. 湘南学院 药学院, 湖南 郴州 423000; 2. 郴州市科技局, 湖南 郴州 423000 )

玄参科(Scrophulariaceae)婆婆纳属(VeronicaL.)植物约有250种,广布全球,主产于亚欧大陆(Salehi et al., 2019)。目前,在我国发现的婆婆纳属植物有60余种,主要分布于西南地区,多数为传统药用植物,用于治疗感冒、咳血、疝气、止血活血、清热解毒、生肌、祛风利湿等多种疾病(Xue et al., 2019)。近年来,由于婆婆纳属植物显著的传统疗效,因此国内外学者对该属植物的生物活性研究不断增多,并发现其在抗氧化(Zivkovic et al.,2017)、抗病毒(Sharifi-Rad et al., 2018)、抗肿瘤(滕杰等,2008)、抗炎镇痛(Kim et al., 2017)、保肝(Tan et al., 2017;Lu et al., 2021)、抑菌(Sharifi-Rad et al., 2018)等方面均有良好的活性。该属植物在抗恶性肿瘤方面活性显著,如阿拉伯婆婆纳和常春藤婆婆纳的甲醇提取物对口腔上皮癌细胞(KB细胞)和B16黑色素瘤细胞的生长均具有显著的抑制作用(Harput et al., 2002)。尽管婆婆纳属植物具有成为抗癌药物的优质潜能,但其活性基础目前尚不清楚。

婆婆纳(Veronicadidyma)为婆婆纳属植物中具代表性的传统药用植物之一,全草入药,具有解毒消肿、凉血止血、理气止痛等功效,用于治疗痈肿、吐血、疝气、睾丸炎、白带等多种疾病,其物质资源极为丰富,在我国各地均有分布(张仁波和窦全丽,2009)。本课题组前期研究发现,婆婆纳醇提取物具有较好的抑制B16细胞增殖作用,其IC50=1.955 mg·mL-1,而文献调研结果显示,迄今为止未见对婆婆纳植物化学成分的研究报道,并且活性基础不明。因此,基于以上报道和本课题组前期研究基础,为更好地利用婆婆纳资源,本研究以阐明婆婆纳抗黑色素瘤的活性部位及活性成分为目的,采用植物化学分离纯化技术,以对B16和A375黑色素瘤细胞株生长的抑制作用为导向,拟探讨以下问题:(1)婆婆纳醇提取物抗黑色素瘤的活性部位;(2)婆婆纳抗黑色素瘤活性部位的物质基础;(3)物质基础中单体化学成分的抗黑色素瘤活性评价。本研究结果可为合理开发利用婆婆纳植物资源提供科学依据。

1 材料与仪器

所用材料于2020年4月采自湖南省郴州市苏仙区,经湘南学院药用植物学教师刘鹏老师鉴定为玄参科婆婆纳属植物婆婆纳(Veronicadidyma)的全草,标本(PPN202005CZ)保存于湘南学院的湖南省教育厅天然产物心脑血管重点实验室。

核磁共振仪(德国Bruker AM-400 spectrometer、Bruker AM-500 spectrometer),高效液相色谱仪(岛津LC-20A系列),制备色谱仪(岛津Essentia Prep LC-16P系列),多功能酶标仪(CytationTM3 ),二氧化碳培养箱(Thermo Fisher Scientific,Form 311),生物安全柜(Thermo Fisher Scientific,MSC-Advantage 1.8),葡聚糖凝胶(Sephadex LH-20, Lipophilic Sephadex LH-20, Pharmacia),预制硅胶板(青岛海洋化工,GF254),制备C18色谱柱 (YMC-Pack ODS-A, 250 mm × 20 mm, 5 μm, YMC Co., Ltd, Kyoto, Japan),甲醇(色谱纯,麦克林),其他常规试剂(分析纯,国药集团)。小鼠黑色素瘤细胞株B16(武汉博士德),人黑色素瘤细胞株A375(武汉博士德),CCK8试剂盒(上海生工),DMSO(Biosharp),胎牛血清(Gibco),培养基RPMI-1640(HyClone),胰酶(Gibco)。

2 实验方法

2.1 提取和分离

将新鲜婆婆纳全草晾干,取1 kg干燥全草粉碎,用90%乙醇室温浸提3次,每次72 h,合并提取浸提液,减压浓缩至无醇味,加纯水稀释粉碎,最终体积为1 L。经水分散后的提取物依次用石油醚、乙酸乙酯、正丁醇萃取,少量多次,至萃取液颜色变淡为止,减压回收萃取溶剂,得7.7 g的石油醚层、13.30 g的乙酸乙酯层、9.30 g的正丁醇层、25.46 g的水层样品。

通过活性评价发现,乙酸乙酯层样品即乙酸乙酯萃取部位(PPNE)较其他样品具有突出的抑制黑色素瘤细胞B16和A375的活性,对PPNE样品进行系统的分离纯化。取PPNE(12.56 g)样品用适量甲醇溶解,经0.45 μm微孔滤头过滤,反向硅胶(ODS)拌样,以甲醇∶水(1∶1~1∶0)为洗脱剂进行ODS柱层析,经高效液相色谱(HPLC)和薄层色谱(TLC)检测,合并馏分,得A、B、C、D、E五个部分。A部分,采用葡聚糖凝胶柱(HL-20,洗脱剂为甲醇和水系统)进行反复的柱层析,得化合物1(45 mg)和化合物2(39 mg)。B部分,采用葡聚糖凝胶柱(HL-20,洗脱剂为甲醇和水系统)进行反复的柱层析,得化合物5(19 mg)。C部分,采用葡聚糖凝胶柱(HL-20,洗脱剂为甲醇和水系统)进行反复的柱层析,得化合物6(15 mg),分别合并凝胶柱层析后含有化合物3和化合物4的馏分,采用半制备色谱进行制备(检测波长为254 nm,甲醇∶水为55∶45),制备后采用凝胶柱层析纯化得化合物3(21 mg)和化合物4(19 mg)。E部分,采用葡聚糖凝胶柱(HL-20,洗脱剂为甲醇和水系统)柱层析后,采用半制备色谱进行制备[检测波长为254 nm,甲醇∶水(65∶35)],制备后采用凝胶柱层析纯化得化合物7(35 mg)。

2.3 HPLC分析

采用HPLC对活性较好的乙酸乙酯层(PPNE)进行分析。色谱条件:色谱柱Kromasil 100-5-C18 柱(4.6 mm × 250 mm),检测波长为276 nm,流动相(0.1 %甲酸A~乙腈B),流速为1 mL·min-1,进样体积为5 μL,采用梯度洗脱,平衡柱子采用15 % B。洗脱过程为0~5 min,30% B;5~10 min,30%~40%;10~20 min,40% B;20~30 min,40%~50% B;40~45 min, 50%~60% B;45~50 min, 60%~98% B;50~55 min,98% B;55~60 min,15% B。PPNE的HPLC如图2所示。

图 1 婆婆纳的分离纯化流程图Fig. 1 Separation and purification flow chart of Veronica didyma

图 2 乙酸乙酯萃取部位的HPLC图Fig. 2 HPLC diagram of ethyl acelate extract (PPNE)

2.3 细胞培养

细胞接种于直径为6 cm的细胞培养皿中,用含10%胎牛血清、1%双抗的RPMI-1640培养基在37 ℃、5% CO2的细胞培养箱中进行培养,待细胞贴壁生长融合到85%左右时,采用胰酶消化传代,继续培养。

2.4 用CCK8法检测婆婆纳样品对B16和A375的增殖抑制作用

取处于对数生长期的细胞,用胰酶消化后离心得细胞沉淀,用培养基稀释成1×104个·mL-1的单细胞悬液接种于96孔板中,每孔100 μL,置于37 ℃、5%的CO2培养箱中培养12 h后,将培养液换成含有婆婆纳提取物或单体化合物的培养液继续培养,每孔100 μL;用含药培养基继续培养24 h,换新鲜培养液,同时每孔加10 μL CCK8,振摇混合均匀,继续培养4 h,用多功能酶标仪测吸光度值,测定波长为450 nm。设置给药孔(A1)、细胞空白孔(A2)、无细胞空白孔(A0),5个复孔。

细胞增殖的抑制率(%)={ [(A2-A0)-(A1-A0)]/(A2-A0)}×100。

3 结果与分析

3.1 对婆婆纳乙醇浸提物及不同萃取部位的抗黑色素瘤活性评价

婆婆纳乙醇浸提物及不同溶剂萃取部位对黑色素瘤细胞B16和A375增殖的抑制结果如表1所示。从整体上来看:(1)婆婆纳样品对B16细胞增殖的抑制作用强于A375细胞;(2)乙酸乙酯部位的抑制黑色素瘤的作用最强(样品浓度为8 mg·mL-1时,其B16细胞的IC50值为0.177 mg·mL-1),石油醚层次之;(3)婆婆纳乙醇提取物有抑制黑色素瘤的作用,尤其是对B16细胞的抑制作用较强(样品浓度为8 mg·mL-1时,其B16细胞的IC50值为1.955 mg·mL-1),其他水层、正丁醇层抑制黑色素瘤的作用较弱或基本无抑制作用。由此可见,乙酸乙酯部位是婆婆纳抑制黑色素瘤细胞增殖的活性部位,婆婆纳抗黑色素瘤的活性成分主要分布在乙酸乙酯部位和石油醚部位,尤其是乙酸乙酯部位。

表 1 婆婆纳各样品对黑色素瘤细胞的抑制作用Table 1 Inhibitory effects of different samples of Veronica didyma on melanoma cells

3.2 婆婆纳乙酸乙酯萃取部位(PPNE)的化学成分

通过系统的分离纯化,我们从乙酸乙酯层分离得到了7个化合物,鉴定结果:化合物1为对羟基苯甲醛,化合物2为胡黄连苷II,化合物3为isoscutellarein 7-O-(6‴-Oacetyl)-β-allopyranosyl (1‴→2″)-β-glucopyranoside,化合物4为3′-hydroxy-4′-O-methylisoscutellarein 7-O-[6‴-O-acetyl-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside,化合物5为 6-O-veratroylcatalposide,化合物6为veronicoside,化合物7为 isoscutellarein 4′-methyl ether 7-O-(6‴-O-acetyl)-ballopyranosyl (1‴→2″)-β-glucopyranoside。其化学结构如图3所示,化合物的13C-NMR数据如表2所示。化合物2、5、6属于环烯醚萜苷类化合物,化合物3、4、7属于黄酮苷类化合物。

表 2 化合物3-7的13C-NMR数据Table 2 13C-NMR spectral data of compounds 3-7

化合物1白色粉末,易溶于甲醇,1H-NMR (500 MHz, DMSO-d6)δ: 10.94(1H, s, -CHO), 7.78(2H, d,J=8.5 Hz, H-2, 6), 6.81(2H, d,J=8.5 Hz, H-3, 5);13C-NMR (125 MHz, DMSO-d6)δ: 131.99(C-1), 131.95(C-2, 6), 115.53(C-3, 5), 161.98(C-4), 189.29(-CHO)。以上数据与文献(黄宇飞等,2020)报道一致,化合物1鉴定为对羟基苯甲醛。

化合物2无色方晶,溶于甲醇,和胡黄连苷II对照品一起进行HPLC分析,不同洗脱系统保留时间相同,DAD图谱相同,混合样品在胡黄连苷II对照品色谱峰的位置仅有一个色谱峰,化合物2鉴定为胡黄连苷II。

化合物3黄色粉末,溶于甲醇,1H-NMR (500 MHz, DMSO-d6)δ: 6.85 (1H, s, H-3), 6.70 (1H, s, H-6), 7.98 (1H, d,J= 8.5 Hz, H-2′), 7.98 (1H, d,J= 8.5 Hz, H-6′), 6.95 (1H, d,J= 8.5 Hz, H-3′), 6.95 (1H, d,J= 8.5 Hz, H-5′), 12.37 (1H, s, 5-OH), 5.08 (1H,d,J=6.5 Hz, H-Glu-1), 3.60 (1H, m, H-Glu-2), 3.52 (1H, m, H-Glu-3), 3.26 (1H, m, H-Glu-4), 3.46 (1H, m, H-Glu-5), 3.75 (1H, m, H-Glu-6a), 3.52 (1H, m, H-Glu-6b), 4.93(1H, d,J= 8.0 Hz, H-All-1), 3.26 (1H, m, H-All-2), 3.93 (1H, m, H-All-3), 3.43 (1H, m, H-All-4), 3.88 (1H, m, H-All-5), 4.03(1H, m, H-All-6a), 4.02 (1H, m, H-All-6b), 1.88 (3H, s, -OAc),13C-NMR (125 MHz, DMSO-d6)。以上数据与文献(Albach et al.,2003)一致,故化合物3鉴定为isoscutellarein 7-O-(6‴-oacetyl)-β-allopyranosyl (1‴→2″)-β-glucopyranoside。

化合物4黄色粉末,溶于甲醇,1H-NMR (500 MHz, DMSO-d6)δ: 6.81 (1H, s, H-3), 6.69 (1H, s, H-6), 7.51 (1H, d,J= 1.5 Hz, H-2′), 7.62 (1H, dd,J= 8.5, 2.0 Hz, H-6′), 7.12 (1H, d,J= 8.5 Hz, H-5′), 12.35 (1H, s, 5-OH), 3.88 (1H, s, -OCH3), 5.10 (1H, d,J=2.5 Hz, H-Glu-1), 3.60 (1H, m, H-Glu-2), 3.50 (1H, m, H-Glu-3), 3.25 (1H, m, H-Glu-4), 3.46 (1H, m, H-Glu-5), 3.74(1H, m, H-Glu-6a), 3.52 (1H, m, H-Glu-6b), 4.92(1H, d,J= 8.0 Hz, H-All-1), 3.25 (1H, m, H-All-2), 3.92 (1H, m, H-All-3), 3.43 (1H, m, H-All-4), 3.88 (1H, m, H-All-5), 4.03(1H, m, H-All-6a), 4.03 (1H, m, H-All-6b), 1.88 (3H, s, OAc),13C-NMR (125 MHz, DMSO-d6)。以上数据与文献(Lenherr et al.,1987)一致,故化合物4鉴定为3′-hydroxy-4′-O-methylisoscutellarein 7-O-[6‴-O-acetyl-β-D-allopyranosyl-(1→2)-β-D-glucopyranoside。

化合物5白色粉末,1H-NMR(500 MHz, DMSO-d6)δ: 7.65(1H, dd,J= 8.0, 1.5 Hz, H-6″), 7.47(1H, d,J=1.5 Hz, H-2″), 7.10(1H, d,J=9.0 Hz, H-5″), 6.43(1H, dd,J=10.0, 1.0 Hz, H-3), 5.14 (1H, m, H-1), 5.11 (1H, m, H-6), 5.01 (1H, m, H-4), 4.63 (1H, d,J= 8.0 Hz, H-1′), 3.94 (1H, dd,J= 13.5, 5.0 Hz, H-10a), 3.74 (1H, m, H-10b), 3.74 (1H, m, H-6′a), 3.74 (1H, m, H-7), 3.43 (1H, m, H-6′b), 3.03~3.20 (4H, m, H-2′,3′,4′,5′), 2.60 (1H, m, H-5), 2.50 (1H, dd,J= 9.0, 7.0 Hz, H-9);13C-NMR (125 MHz, DMSO-d6)。以上数据与文献(高坤等,2003)一致,故化合物5鉴定为6-O-veratroylcatalposide。

化合物6淡棕色粉末,1H-NMR(500 MHz, DMSO-d6)δ: 8.02 (2H, d,J= 7.5 Hz, H-2″, 6″), 7.70 (1H, t,J= 7.5 Hz, H-4″), 7.56 (2H, t,J= 8.0 Hz, H-3″, 5″), 6.43 (1H, dd,J= 6.0, 1.5 Hz, H-3), 5.14 (1H, H-1), 5.12 (1H, m, H-6), 5.01 (1H, m, H-4), 4.63 (1H, d,J= 8.0 Hz, H-1′), 3.94 (1H, dd,J= 13.3, 4.8 Hz, H-10a), 3.74 (1H, m, H-10b), 3.74 (1H, m, H-6′a), 3.74 (1H, br s, H-7), 3.44 (1H, m, H-6′b), 3.03~3.20 (4H, m, H-2′,3′,4′,5′), 2.61 (1H, m, H-5), 2.50 (1H, H-9);13C-NMR (125 MHz, DMSO-d6)。以上数据与文献一致(Kwak et al.,2009),故化合物6鉴定为veronicoside。

化合物7黄色粉末,溶于甲醇,1H-NMR (400 MHz, DMSO-d6)δ: 6.93 (1H, s, H-3), 6.70 (1H, s, H-6), 8.10 (1H, d,J= 9.2 Hz, H-2′), 8.10 (1H, d,J= 9.2 Hz, H-6′), 7.13 (1H, d,J= 8.5 Hz, H-3′), 7.13 (1H, d,J= 8.5 Hz, H-5′), 12.33(1H, s, 5-OH), 3.87 (1H, s, -OCH3), 5.08 (1H,d,J=7.6 Hz, H-Glu-1), 3.60 (1H, m, H-Glu-2), 3.52 (1H, m, H-Glu-3), 3.25 (1H, m, H-Glu-4), 3.46 (1H, m, H-Glu-5), 3.74 (1H, m, H-Glu-6a), 3.52 (1H, m, H-Glu-6b), 4.92(1H, d,J= 8.0 Hz, H-All-1), 3.25 (1H, m, H-All-2), 3.92 (1H, m, H-All-3), 3.43 (1H, m, H-All-4), 3.88 (1H, m, H-All-5), 4.03(1H, m, H-All-6a), 4.03 (1H, m, H-All-6b), 1.88 (3H, s, -OAc);13C-NMR (100 MHz, DMSO-d6)。以上数据与文献(Nugroho et al.,2008)一致,故化合物7鉴定为isoscutellarein 4′-methyl ether 7-O-(6‴-O-acetyl)-ballopyranosyl (1‴→2″)-β-glucopyranoside。

3.3 单体化合物的抗黑色素瘤活性评价

从PPNE样品中分离纯化得到7个较大量单体成分,对这7个单体成分的抗B16和A375细胞增殖活性进行评价,结果如表3所示。除化合物1外,化合物2-7对B16和A375细胞株的增殖均有良好的抑制B16和A375细胞增殖的作用,并且对B16细胞增殖的抑制作用强于A375细胞,此结果与乙醇提取物和PPNE的活性一致。黄酮苷类化合物3、4、7对B16和A375细胞增殖的抑制作用弱于环烯醚萜苷类化合物2、5、6的抑制作用。可见,环烯醚萜类和黄酮类物质可能是婆婆纳抗黑色素瘤的活性基础。

表 3 单体化合物对黑色素瘤细胞的抑制作用Table 3 Inhibitory effect of compounds of Veronica didyma on melanoma cells

图 3 乙酸乙酯萃取部位(PPNE)中化合物的化学结构图Fig. 3 Compound structures from PPNE

4 讨论与结论

从婆婆纳抗黑色素瘤的活性部位PPNE层得到7个较大量化合物,均为首次从婆婆纳植物中得到。本研究首次报道了黄酮类化合物3、4、7,环烯醚萜类化合物5具有良好抗黑色素瘤活性,并且本文首次对化合物3、4、5的活性进行了报道。化合物5为6-O-veratroylcatalposide,最早从植物Gardeniajasminoides中分离得到(Lee et al.,1987),笔者之前未见其相关活性数据。化合物4较化合物3黄酮母核C环上多个甲氧基,化合物3和化合物4最早由Lenherr等人从唇形科刺蕊草属植物Stachysrecta中得到(Lenherr et al.,1984);其后化合物3在其他植物中也有获得,如植物Stachysanisochila、长果婆婆纳等,化合物4从唇形科刺蕊草属植物Stachysanisochila中也曾获得,笔者之前未见化合物3和化合物4的活性报道。化合物7较化合物3黄酮母核C环上多了个甲氧基,最早从植物Veronicafiliformis的全草中获得(Chari et al.,1981),其后化合物7曾从植物水苏(Stachysjaponica)中分离得到,具有显著抑制乙酰胆碱酯酶(IC50=39.94 mg·mL-1)和丁酰酯酶活性的作用(IC50=86.98 mg·mL-1)(Nugroho et al.,2018)。

对婆婆纳不同萃取部位的抗黑色素瘤活性进行评价,结果显示婆婆纳抗黑色素瘤的活性成分主要分布在乙酸乙酯萃取部位(PPNE)层和石油醚部位,尤其是PPNE层。PPNE层得到的单体化合物进行抗黑色素瘤活性评价,结果显示环烯醚萜类化合物2、5、6具有显著抑制黑色素瘤细胞增殖作用,当细胞培养液中药物浓度为50 μg·mL-1时,其对B16细胞的抑制率分别为89.62%、91.62%、93.36%,对A375细胞的抑制率分别为58.29%、53.96%、53.49%;黄酮类化合物3、4、7也具有较好的抑制B16和A375增殖的作用,黄酮苷类化合物对B16增殖的抑制作用稍弱于环烯醚萜苷类化合物,对A375增殖的抑制作用同环烯醚萜苷类化合物类似。综上所述,婆婆纳醇提取物的PPNE层为婆婆纳的抑制黑色素瘤细胞增殖的活性部位,环烯醚萜类化合物和黄酮类化合物均为活性部位抑制黑色素瘤细胞增殖的活性物质基础,尤其是环烯醚萜类化合物。活性机制的初步研究发现活性部位和活性单体化合物可以抑制黑色素瘤细胞的迁移和侵袭,但具体机制还有待进一步的研究和验证。

猜你喜欢

柱层析黑色素瘤乙酸乙酯
密蒙花乙酸乙酯萃取层化学成分的分离与鉴定
泥炭组成成分的GC-MS分析
小蜡叶民间药用物质基础提取模式探索
广西莪术乙酸乙酯部位的抗血栓作用
泽漆乙酸乙酯提取物对SGC7901/DDP多药耐药性的逆转及机制
柱层析用硅胶对羌活中主要成分的影响
厚朴酚中压硅胶柱层析纯化工艺的优化
原发性食管恶性黑色素瘤1例并文献复习
TGF-β1在黑色素瘤血清中的异常表达及其对肿瘤细胞凋亡的影响
锁阳乙酸乙酯提取物的雌激素样作用研究