APP下载

巢湖、洞庭湖、鄱阳湖沉积物重金属污染及来源的Meta分析

2023-02-24王书航车霏霏

中国环境科学 2023年2期
关键词:巢湖鄱阳湖洞庭湖

李 贺,王书航,车霏霏,姜 霞,牛 勇

巢湖、洞庭湖、鄱阳湖沉积物重金属污染及来源的Meta分析

李 贺,王书航,车霏霏,姜 霞,牛 勇*

(中国环境科学研究院,湖泊水污染治理与生态修复技术国家工程实验室,国家环境保护湖泊污染控制重点实验室,北京 100012)

对2004~2021年关于巢湖、洞庭湖、鄱阳湖沉积物中重金属浓度的研究进行了分析,并对3个湖泊沉积物的重金属地质累积、潜在生态风险和毒性进行了蒙特卡洛分析,以清晰、客观、全面地描述3个湖泊沉积物的重金属污染情况.结果表明,3个湖泊均存在不同程度的Cu、Zn、Pb、Ni、Cr和Cd污染,总体污染程度上,鄱阳湖>洞庭湖>巢湖.地累积指数表明,Cd是3个湖泊中最主要的污染元素,巢湖沉积物中Cd处于偏中度污染水平占比为84.76%,洞庭湖沉积物中Cd处于偏重度污染水平占比为32.64%,鄱阳湖沉积物中Cd偏重度污染水平占比达到46.64%.巢湖、洞庭湖和鄱阳湖RI值中Cd元素为主要贡献者,占比分别为80.26%、91.04%和90.03%.巢湖整体处于中低风险,洞庭湖RI值高风险概率为60.74%;鄱阳湖重金属RI值高风险概率68.95%,生态风险高.毒性结果表明,三个湖泊沉积物毒性较高的是Pb和Cr,巢湖沉积物中的重金属毒性处于低度毒性水平,洞庭湖沉积物中度毒性水平的累积概率为69.03%,鄱阳湖中度毒性水平的累积概率为7.18%.巢湖、洞庭湖、鄱阳湖重金属污染情况各不相同,重金属大体上存在3~4个不同来源:工业源、交通源、农业源和自然源,巢湖交通源为主要影响,污染较轻;洞庭湖和鄱阳湖主要污染源为工业活动,污染较重.

巢湖;洞庭湖;鄱阳湖;重金属;污染评价

重金属是湖泊沉积物的主要污染物,具有致毒性、累积性、放大性等特征,严重威胁水生生物安全以及人类健康[1-2].作为水体底栖环境的主要固相介质,沉积物与上覆水体存在密切联系[3].沉积物还是水体中各种污染物的储存库,进入到水体的重金属会在各种作用下蓄积在沉积物中,但蓄积的重金属会在环境条件变化时再次释放出来,破坏上覆水体环境质量、危害水生生物[4-5].因此,研究沉积物中重金属含量变化是水体污染评价和调控的重要基础[6-8].

随着长江流域经济的快速发展,生态资源透支严重,环境污染问题日益凸显,长江流域湖泊也面临多种污染问题,尤其是长效污染物重金属的污染问题[9].国家长江保护修复攻坚战行动计划开始后,长江流域内巢湖、洞庭湖和鄱阳湖等湖泊重金属污染研究也在同步进行,已开展许多关于巢湖、洞庭湖和鄱阳湖沉积物中重金属含量调查,但在不同的研究中出现了不同的重金属含量水平.巢湖2020年沉积物重金属Cr含量是2018年研究中Cr含量的4倍[10-11];有研究表明巢湖底泥处于清洁状态,还有研究表明巢湖仍然存在偏重度的 Hg 污染和偏中度的 Cd 污染[12].洞庭湖沉积物中Cd含量调查也存在较大差异[13-15].在已经开展的很多鄱阳湖沉积物重金属研究中Cu 和 Cd 为主要污染元素,但在2017年的研究中Pb、Cr对总毒性的贡献较大[16-17],我们认为这种差异主要由于重金属在沉积物中浓度分布不均匀所致,空间部分的不均匀受到pH值、温度等多因素的影响[18],这种差异结论存在,不利于管理者对于湖泊沉积物重金属污染情况的了解,同时也增加了污染防治策略制定的难度,因此,需要更好的一种评价方式去描述湖泊沉积物的污染状态.

近年来,Meta分析逐步在环境污染现状分析中使用,主要用于弥补研究区域内长时间调查数据缺失问题,例如,使用Meta分析评估了长江三角洲农田表土重金属污染的时间趋势;还有研究人员整合了2450份出版物中的数据,绘制了中国农田土壤中重金属的空间分布图,还有对中国耕地As污染情况的分析[19-21].在缺乏监测数据的情况下,对已公布的数据开展Meta分析用于研究各种环境介质污染情况具有重要价值.目前,Meta分析还没有发展成一个系统的分析过程来进行环境污染评估,现在可用的方法通常是从相关出版物收集污染物数据并重新分析,以描述研究区域的污染状态.

因此,本文以长江中下游巢湖、洞庭湖和鄱阳湖沉积物重金属调查研究为基础,基于Meta分析的基本原理系统性分析沉积物重金属污染水平,并采用蒙特卡洛方法对重金属地累积特征和潜在生态风险状态展开不确定性分析[22],从而更加清晰、客观的呈现湖泊沉积物重金属污染水平、风险等级以及湖泊之间污染的差异.研究结果可为长江中下游湖泊重金属污染防治提供参考,研究方法可为世界其他湖泊污染状况诊断提供借鉴.

1 材料和方法

1.1 研究方法

1.1.1 Meta分析 Meta分析是一种统计方法,用于综合分析众多研究中的大量数据并整合结果,其本质是将多个研究结果中的子效应量进行综合评价,从而得到感兴趣的总效应量[23-24],其主要步骤是使用正式的方法进行文献检索、研究筛选(包括根据预定义标准对合格的研究进行批判性评估)、数据提取、编码和通常的统计分析,以及每个步骤的详细、透明的文档记录,在开展巢湖、洞庭湖和鄱阳湖沉积物重金属积累特征时遵循了Meta分析基本原理及步骤.

1.1.2 蒙特卡洛模拟 蒙特卡洛模拟法是以统计抽样理论为基础,利用随机数,经过对随机变量已有数据的统计进行抽样实验或随机模拟,以求得统计量的某个数字特征并将其作为待解决问题的数值解[22].在分析巢湖、洞庭湖和鄱阳湖沉积物重金属积累特征时,通过经典蒙特卡洛模拟方法来处理评价结果的不确定性,采用CrystalBall工具软件分别对地质累积指数(简称geo)、潜在生态风险指数(简称RI)和毒性(简称TU)进行了1000次模拟计算来反映3个湖泊重金属污染情况.

1.2 数据收集

本文通过中国知网(CNKI)和Web of Science收集了2002~2021年巢湖、洞庭湖和鄱阳湖沉积物中重金属的监测数据,在数据库中使用的搜索词是SU=(’巢湖‘+’洞庭湖‘+’鄱阳湖‘)*’沉积物‘*’重金属‘和ts=(chaohu lake) or ts=(dongting lake) or ts= (poyang lake) and ts=sediment and ts=(heavy metal),符合筛选条件的文章主要集中在2004~2021年.最后,如图所示,筛选获得了其中52份文献资料,370多份数据记录[7,11-17,25-68].首先,本文选择的文章种应包括巢湖、洞庭湖、鄱阳湖全湖表层沉积物(顶部5cm)的调查.其次,还应包括调查点的明确数量、重金属含量.在所有已收集的研究中,沉积物中重金属的总含量基本上通过单酸或混合酸消化进行分析,并采用了严格的质量控制和保证,图2为筛选文献中3个湖泊的采样点位置.

图1 文献筛选过程与结果

1.3 数据处理

1.3.1 样本数加权平均(SNWM)在实际调查中,调查点的数量越多,获得的浓度水平的代表性就越大.因此,本研究使用调查点的数量进行样本数加权平均.

式中:N是数据记录中的采样数,C是数据记录中的重金属浓度,是数据记录的数量.NC是从原始研究中获得的.

1.3.2 地累积指数法 地累积指数法常被用于定量研究沉积物中重金属的污染程度,该方法能够直观反映外源重金属在沉积物中的富集程度[69].本研究将对全国重要湖泊重金属累积程度进行评估,具体计算过程如下:

式中:B为沉积岩(普通页岩)中该元素的地球化学背景值;C为元素在沉积物中的含量;为考虑各地岩石差异可能会引起背景值的变动而取的系数(一般取值为1.5);geo为地累积指数,依据地累积指数大小将重金属污染程度划分为5个等级,geo<0,清洁状态;05,严重污染.

1.3.3 潜在生态风险指数法 Hakanson提出的将重金属含量、生态、环境与毒理性综合的潜在生态风险指数法[70],既简单快速又标准地对生态风险进行了等级划分.具体计算公式如下:

表1 潜在生态危害与风险等级

1.3.4 毒性 毒性用于评估沉积物中重金属对水环境的影响[72],以使各种重金属引起的毒性正常化,从而比较它们的相对效应,定义为测定浓度(C)与可能效应水平值(PEL)(P)的比率[73-74].总毒性(STU)是TU的总和.

2 结果和讨论

2.1 数据统计分析

表2 文献信息和沉积物指导值统计描述

注:a:安徽省江淮流域土壤地球化学背景值,b: 洞庭湖区土壤地球化学背景值,c: 江西省C层土壤的各元素背景值.

表2显示了所选52篇论文(巢湖20篇、洞庭湖18篇、鄱阳湖14篇)中沉积物的重金属浓度统计结果.主要开展了3个湖泊的Cu、Zn、Pb、Ni、Cr、Cd重金属研究,巢湖、洞庭湖和鄱阳湖Cd 加权均值较高为0.43、3.18和1.24mg/kg,分别是其环境背景值的3.75、10.26、11.50倍,均高于南四湖[75](0.23mg/kg)、艾比湖[76](0.17mg/kg)和乌伦古湖[77](0.33mg/kg).洞庭湖除Cr加权均值外,其他元素的浓度略高于环境背景值,鄱阳湖Cr 加权均值为其环境背景值的1.24倍,巢湖Cr加权均值相对为环境背景值的1.23倍,但3个湖泊Cr元素加权均值也高于阳澄湖[78]和艾比湖,此外3个湖泊Cu、Zn、Pb、Ni加权均值也高于或接近其余4个湖泊.从变异系数来看,巢湖Pb、Cr和Cd的变异系数分别为46%、51%和44%,洞庭湖Zn和Cd的变异系数分别为39%和45%,鄱阳湖Zn、Cr和Cd的变异系数为66%、49%和66%,其他元素的变异系数为10%~37%.结果表明,3个湖泊Cr和Cd的浓度在空间上有很大差别,浓度水平存在很大的不确定性.

2.2 Igeo、RI和TU分析

2.2.1geo分析 根据已收集到的数据,对地累积指数进行1000次模拟计算,计算3个湖泊沉积物中6种重金属元素,得到各重金属元素的geo指数,如图3所示.3个湖泊Cdgeo最高,巢湖沉积物中Cd处于轻度污染水平和偏中度污染水平占比分别为15.24%、84.76%,洞庭湖沉积物中Cd处于中度污染水平占比为58.41%,处于偏重度污染水平占比为32.64%,鄱阳湖沉积物中Cd中度污染及以上水平占比达到89.31%;除Cd外,巢湖和洞庭湖沉积物Zn Igeo最高,巢湖处于偏中度污染水平占比为12.72%;洞庭湖处于轻度污染水平占比为55.30%,其余元素均处于清洁或轻度污染水平;鄱阳湖沉积物Nigeo最高,处于轻度污染水平达到83.55%,其余元素均处于清洁或轻度污染水平.3个湖泊地累积指数显示的污染程度而言,鄱阳湖>洞庭湖>巢湖.

2.2.2 RI分析 根据统计数据,对3个湖泊沉积物重金属潜在生态风险进行1000次模拟计算,计算3个湖泊沉积物中6种重金属元素,得到RI,如图4、5所示.巢湖、洞庭湖和鄱阳湖RI值中Cd元素为主要贡献者,占比分别为80.26%、91.04%和90.03%,贡献值最低为Zn元素,分别为1.69%、0.51%和0.55%.其余元素贡献占比1.59%~4.90%,贡献值偏低.图5表明,巢湖重金属RI低风险概率为47.49%,中风险为52.51%,巢湖整体处于中低风险;洞庭湖重金属RI中风险概率为39.26%,高风险概率为60.74%,洞庭湖生态风险较高,整体处于中高风险;鄱阳湖重金属RI低风险、中风险和高风险概率分别为3.74%,27.31%和68.95%,鄱阳湖生态风险也较高.总体来看,鄱阳湖生态风险最高,洞庭湖次之,巢湖生态风险最低.

2.2.3 TU分析 针对3个湖泊沉积物中重金属的毒性特征,进行了1000次模拟计算,统计结果如图6、7所示.图6显示了不同金属元素的毒性对总毒性贡献,巢湖沉积物中重金属的总毒性依次为Pb、Cr、Zn、Ni、Cu和Cd;洞庭湖沉积物中重金属总毒性最高为Pb,其次为Cr,最低为Cu;鄱阳湖中重金属总毒性最高也为Pb,3个湖泊中Pb和Cr总毒性较高,表明3个湖泊Pb和Cr元素毒性较高.图7显示了3个湖泊沉积物总毒性的风险分布特征,巢湖沉积物中的重金属毒性低度毒性水平的累积概率为100%,处于低毒性水平,风险较低;洞庭湖沉积物中的重金属毒性低度毒性水平的累积概为30.97%,中度毒性水平的累积概率为69.03%,整体处于中低度毒性水平;鄱阳湖沉积物中的重金属毒性低度毒性水平的累积概率为92.82%,中度毒性水平的累积概率为7.18%,整体处于低度毒性水平.3个湖泊毒性水平:洞庭湖>鄱阳湖>巢湖.

3 湖泊重金属污染来源分析

3.1 巢湖重金属污染来源分析

巢湖处于位于安徽省江淮丘陵与长江之间,是“引江济淮”工程重要的链接点,与安徽主要城市合肥、巢湖等相接,其周边人类活动频繁,重金属污染情况复杂,来源多样.根据2.3结果分析可知,巢湖表层沉积物Igeo和RI分析中,Cd污染风险最高,其次是Zn;表层沉积物重金属TU分析中,Pb毒性最高,其次是Cr.研究表明[10],巢湖流域产业结构与水污染程度联系十分紧密,如合肥市电力、热力的生产和供应业、食品制造、有色金属冶炼及压延加工业、文教体育用品制造业、家具制造业、农林牧渔业等造成巢湖表层沉积物重金属污染问题.其中 Cd污染原因可能是流域内电镀工业企业污水未进入污水处理厂,直接进入南淝河,最终汇入巢湖[11];其次巢湖周边农业区生产中商品有机肥、农药以及农家肥大量投入产生Cd 排放,围湖造田等不良耕作更加剧了这一过程[83],水溶性肥料的使用也会带来超标的 Cd、As[84].巢湖周边交通干道密布,汽车润滑油的使用及金属分解会带来大量 Zn[85],造成巢湖Zn污染;汽车制动过程的器械摩擦、设备磨损均会产生Pb、Cr[86-87],造成巢湖Pb、Cr污染.巢湖重金属来源主要包括自然源、农业源、交通源、工业源,其中交通源占主体,其次为自然源,工业源整体贡献较小,主要是因为周边城市城市化刚刚抵达巢湖湖滨,滨湖工业体系构建不完全,但周边基础设施建设已展开,路网纵横、交通繁忙,进而成为主要污染贡献源[11].巢湖整体处于受人类活动影响的初步阶段,污染较轻,但仍要开展重金属的预防工作.

3.2 洞庭湖重金属污染来源分析

洞庭湖位于湖南省东北部,长江中游荆江南岸,是我国第二大淡水湖,受人类活动的影响,已经明显分化为东、西、南的3个湖区[51],是长江至关重要且拥有调蓄作用的湖泊.2.3的结果表明洞庭湖表层沉积物中Cdgeo和RI指数最高,污染较重;TU分析中Pb、Cr占比较高.研究表明[53]洞庭湖重金属污染主要来自与“四水”流域的人类活动.Cd含量较高的原因是有色金属采矿与冶炼工业,大量富含重金属的工业废水排放有关[88-89],其次洞庭湖流域处于南方喀斯特地貌区域,碳酸盐岩风化成土的巨大的岩/土体积变化以及Cd的地球化学性质,很容易导致Cd的相对富集,并在地表径流等自然搬运过程进入湖泊,此外围湖造田造成的水土流失等也增加了Cd的入湖通量[90].Pb除来自岩石风化外,流域上游Pb-Zn矿床矿石、煤和柴油燃烧等人为源也占一定比例,大气沉降也越来越成为沉积物中活动Pb的重要潜在来源[91].Cr和Ni受自然因素影响较大,主要与岩石的自然风化和侵蚀有关;但在一定程度上也受到了人为活动的影响,可能与沿岸生活污水以及湖区周边畜禽养殖废水和农业径流有关[89].洞庭湖重金属污染主要受人为活动影响,其主要来源包括工业源、自然源、农业和生活污水源,洞庭湖重金属污染的空间特征与洞庭湖输入河流和周边城市的特征密切相关,尤其是湘江沿岸大量的有色金属采矿和冶炼和岳阳市化工企业的发展[45].洞庭湖重金属整体处于中重度污染.因此,要综合考虑整个流域,制定污染控制和管理战略,优化相应城市的产业结构,逐步恢复洞庭湖水生系统.

3.3 鄱阳湖重金属污染来源分析

鄱阳湖流域广阔,遍布江西全省,主要的河流有修水、赣江、抚河、信江和饶河,又由湖口与长江接壤,是长江中下游平原重要的湖泊之一[92].根据2.3结果可知,鄱阳湖表层沉积物中Cd Igeo指数和RI指数占比最高,TU分析同样是Pb、Cr占比较高.研究表明[93]“五河”输入是入湖污染负荷的主要来源,其占污染负荷总量的80%左右,乐安河(饶河南支)中、下游的德兴铜矿、信江中游的永平铜矿、信江流经贵溪市大型有色金属冶炼厂、抚河上游的铀矿、赣南有色金属采矿区等携带大量工业废水进入鄱阳湖.湖区东南部德兴矿区已探明铅锌矿有数百万吨,在铜矿、铅锌矿开采和冶炼过程中会释放出Pb、Hg、Zn、Cu、As和Cd进入环境[94];其次鄱阳湖周边为江西传统农业大县南昌县和余干县,大量农药化肥的施用导致了Cd等重金属残留于土壤,通过降水、地表径流带入湖泊河流[56],流域内水土流失严重,土壤中肥料极易随地表径流进入鄱阳湖,也导致面源污染负荷增加[93].鄱阳湖重金属污染主要来自与工业源,农业源和自然源,其有大量有色金属采矿和冶炼废水对湖泊重金属贡献最高,其次为农药化肥的使用,自然源也对其有一定影响[16].当前鄱阳湖存在较大的重金属污染风险,应减少采矿冶炼等工业活动产生的污染物,提高开采冶炼水平,保护鄱阳湖生态环境.

4 结论

4.1 3个湖泊沉积物均存在不同程度的Cu、Zn、Pb、Ni、Cr和Cd污染,总体污染程度上,鄱阳湖>洞庭湖>巢湖.三个湖泊Cd Igeo最高;除Cd外,巢湖和洞庭湖沉积物Zn Igeo最高,鄱阳湖沉积物Ni Igeo最高.

4.2 巢湖、洞庭湖和鄱阳湖RI值中Cd元素为主要贡献者,占比分别为80.26%、91.04%和90.03%.巢湖RI整体处于中低风险,洞庭湖、鄱阳湖RI值高风险概率分别为60.74%、68.59%,生态风险较高.

4.3 三个湖泊沉积物毒性较高的是Pb和Cr,巢湖沉积物中的重金属毒性处于低毒性水平,洞庭湖沉积物重金属毒性低度、中度毒性水平的累积概分别为30.97%、69.03%,整体处于中度毒性水平,鄱阳湖沉积物中的重金属毒性低度、中度毒性水平的累积概率为92.82%、7.18%,整体处于低度毒性水平.

4.4 巢湖、洞庭湖、鄱阳湖重金属污染情况各不相同,重金属大体上存在3~4个不同来源工业源、交通源、农业源和自然源,巢湖交通源为主要影响,整体污染轻,应开展预防工作;洞庭湖和鄱阳湖主要污染源为工业活动,包括有色金属采矿和冶炼,化工企业生产等,污染较重,应综合考虑流域情况,提高有色金属开采和冶炼技术,逐步恢复流域生态环境.

[1] Zan F, Huo S, Xi B, et al. A 100 year sedimentary record of heavy metal pollution in a shallow eutrophic lake, Lake Chaohu, China [J]. Journal of Environmental Monitoring, 2011,13(10):2788-2797.

[2] Yuan G, Liu C, Chen L, et al. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China [J]. Journal of Hazardous Materials, 2011,185(1):336-345.

[3] 范成新.湖泊沉积物—水界面研究进展与展望[J]. 湖泊科学, 2019, 31(5):1191-1218.

Fan C X. Advances and prospect in sediment-water interface of lakes: A review [J]. Journal of Lake Science, 2019,31(5):1191-1218.

[4] Liu Q, Wang F, Meng F, et al. Assessment of metal contamination in estuarine surface sediments from Dongying City, China: Use of a modified ecological risk index [J]. Marine Pollution Bulleti, 2018,126: 293-303.

[5] Fang T, Xu X. Establishment of sediment quality crality criteria for mrtals in water of the yangtze river using equilibrium-partitioning approach [J]. Resources and Environment in the Yangtze Basin [J]. Resources and Environment in the Yangtze Basin, 2007,16(4):525- 531.

[6] Tang W, Shan B, Zhang H, et al. Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China [J]. Journal of Hazardous Materials, 2010,176(1-3):945-951.

[7] 余秀娟,霍守亮,昝逢宇,等.巢湖表层沉积物中重金属的分布特征及其污染评价[J]. 环境工程学报, 2013,7(2):439-450.

Yu X J, Huo S L, Zan F Y, et al. Distribution characteristics and contamination assessment of arsenic in surface sediments of lake Chaohu, China [J]. Journal of Environmental Engineering Technology, 2013,7(2):12.

[8] 俞 慎,历红波.沉积物再悬浮-重金属释放机制研究进展[J]. 生态环境学报, 2010,19(7):1724-1731.

Yu S, Li H B. Perspectives on the release of heavy metals via sediment resuspension. Ecology and Environmental Science, 2010,19(7):1724- 1731.

[9] 姜 宇,郭庆军,邓义楠.长江流域沉积物和土壤重金属分布规律研究进展[J]. 生态学杂志, 2022,41(4):804-812.

Jiang Y, Guo Q J, Deng Y N. Research progress in the distribution of heavy metals in sediments and soils in the Yangtze River Basin [J].Chinese Journal of Ecology,2022,41(4):804-812.

[10] 杨 阳,李小龙,杨碧莹,等.巢湖表层沉积物重金属污染特征研究[J]. 安徽理工大学学报(自然科学版), 2020,40(4):46-54.

Yang Y, LiX L, Yang B Y, et al. Study on heavy metal pollution characteristics of surface sediments in Chaohu Lake [J]. Journal of Anhui University of Science and Technology (Natural Science), 2020, 40(4):46-54.

[11] 夏建东,龙锦云,高亚萍,等.巢湖沉积物重金属污染生态风险评价及来源解析[J]. 地球与环境, 2020,48(2):220-227.

Xia J D, Long J Y, Gao Y P, et al. Ecological risk assessment and source analysis of heavy metal Pollutions in sediments of the Chaohu Lake [J]. Earth and environment, 2020,48(2):220-227.

[12] 刘 刚,蒋晨韵,李小龙,等.巢湖沉积物重金属浓度分布及风险指数[J]. 环境科学与技术, 2018,41(S1):376-380.

Liu G, Jiang C Y, Li X L, et al. The concentration distribution and risk index of sediment heavy metals in Lake Chaohu [J]. Environmental Science & Technology, 2018,41(S1):376-380.

[13] 郭 晶,李利强,黄代中,等.洞庭湖表层水和底泥中重金属污染状况及其变化趋势[J]. 环境科学研究, 2016,29(1):44-51.

Guo J, Li L Q, Huang D Z, et al. Assessment of heavy metal pollution in surface water and sediment of Dongting Lake [J]. Research of Environmental Sciences, 2016,29(1):44-51.

[14] 刘 俊.洞庭湖沉积物营养盐和重金属污染特征及评价研究[D]. 湘潭:湘潭大学, 2019.

Liu J.Characteristics and evaluation of nutrient and heavy metal pollution in sediments from Dongting Lake [D]. Xiangtan: Xiangtan University, 2019.

[15] 高吉权,朱姗姗,刘鹏飞.洞庭湖底泥沉积物重金属分布与生态风险评价[J]. 云南大学学报(自然科学版), 2019,41(4):851-859.

Gao J Q, Zhu S S, Liu P F. Spatial distribution characteristics and ecological risk assessment of heavy metals insurface sediments of Dongting Lake [J]. Journal of Yunnan University: Natural Sciences Edition, 2019,41(4):851-859.

[16] Niu Y, Niu Y, Yu H, et al. Concentration distribution and toxicity of heavy metals in surface sediment of Poyang Lake, China [J]. Wetlands, 2019,39:S55-S62.

[17] 龚 娴,王亲媛,潘雪梅,等.鄱阳湖沉积物重金属生态风险及其毒性效应[J]. 南昌大学学报(工科版), 2019,41(4):312-317.

Gong X, Wang Q Y, Pan X M, et al. Ecological risk of heavy metals in the sediments of Poyang Lake and its toxic effects [J]. Journal of Nanchang University (Engineering & Technology), 2019,41(4):312- 317.

[18] Niu Y, Jiang X, Wang K, et al. Meta analysis of heavy metal pollution and sources in surface sediments of Lake Taihu, China [J]. Science of the Total Environment, 2020,700.

[19] Zhang X, Zhong T, Chen D, et al. Assessment of arsenic (As) occurrence in arable soil and its related health risk in China [J]. Environmental Geochemistry and Health., 2016,38(3):691-702.

[20] Shao D, Zhan Y, Zhou W, et al. Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis [J]. Environmental Pollution, 2016, 219:329-336.

[21] Duan Q, Lee J, Liu Y, et al. Distribution of heavy metal pollution in surface soil samples in China: A Graphical Review [J]. Bulletin of Environmental Contamination and Toxicology, 2016,97(3):303-309.

[22] Fishman G S. Monte-carlo, control varlates, and stochastic ordering [J]. Siam Journal On Scientific and Statistical Computing, 1989, 10(1):187-204.

[23] Gurevitch J, Koricheva J, Nakagawa S, et al. Meta-analysis and the science of research synthesis [J]. Nature, 2018,555(7695):175-182.

[24] Moher D, Shamseer L, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement [J]. Revista Espanola De Nutricion Humana Y Dietetica, 2016,20(2):148-160.

[25] 陈 洁,李升峰.巢湖表层沉积物中重金属总量及形态分析[J]. 河南科学, 2007,5(2),303-307.

Chen J, Li S F. Chemical speciation and total concentration of heavy metals for sediments from Lake Chaohu [J]. Henan Science, 2007,5(2): 303-307.

[26] 程 杰.巢湖水体重金属污染评价及水中重金属污染的植物修复研究[D]. 合肥:安徽农业大学, 2008.

Chen J. Pollution Evaluation of heavy metals in Chaohu Lake and phytoremediation of heavy metals pollution in water [D]. Hefei:Anhui Agricultural University, 2008.

[27] Fang T, Lu W, Li J, et al. Levels and risk assessment of metals in sediment and fish from Chaohu Lake, Anhui Province, China [J]. Environmental Science and Pollution Research, 2017,24(18):15390- 15400.

[28] 李国莲.巢湖污染物赋存、来源及风险评价研究[D]. 合肥:中国科学技术大学, 2012.

Li G L. Study on enrichment, source and risk assessment of pollutants in Chaohu Lake [D]. Anhui: University of Science and Technology of China, 2012.

[29] Li G, Liu G, Zhou C, et al. Mobility, binding behavior and potential risks of trace metals in the sediments of the fifth largest freshwater lake, China [J]. Water Science and Technology, 2013,67(11):2503- 2510.

[30] 刘 飞,邓道贵,杨 威,等.巢湖表层沉积物重金属的分布特征及生物有效性[J]. 水土保持学报, 2012,26(5):149-153.

Liu F, Deng D G, Yang W, et al. Distribution characteristics and bioavailability of heavy metals in surface sediments of Chaohu Lake. J Soil Water Conserv, 2012,26(5):149-153.

[31] 肖 洒.巢湖沉积物孔隙结构研究与重金属污染评价[D]. 武汉:华中农业大学, 2015.

Xiao S. The Research of the sediment proe structrue and heavy metal pollution assessment in Chaohu Lake [D]. Wuhan: Huazhong Agricultural University, 2015.

[32] 石志芳,姜 霞,杨苏文,等.巢湖表层沉积物中重金属污染的时空变化特征及潜在生态风险评价[J]. 农业环境科学学报, 2010,29(5): 948-954.

Shi Z F, Jiang X, Yang S W, et al. The spatial and temporal variation characteristics and potential ecological risk assessment of heavy metal pollution in surface sediments of Chaohu [J]. Journal of Agro- Environment Science, 2010,29(5):948-954.

[33] Wu L, Liu G, Zhou C, et al. Spatial distributions, fractionation characteristics, and ecological risk assessment of trace elements in sediments of Chaohu Lake, a large eutrophic freshwater lake in eastern China [J]. Environmental Science and Pollution Research, 2018,25(1): 588-600.

[34] 徐圣友,叶琳琳,朱 燕,等.巢湖沉积物中重金属的BCR形态分析[J]. 环境科学与技术, 2008,31(9):20-23.

Xu S Y, Yu L L, Yan Z, et al. Chemical speciation of heavy metals from Chaohu Lake sediments using BCR procedure [J]. Environmental Science & Technology (in Chinese), 2008,31(9):20-23.

[35] Yin H, Deng J, Shao S, et al. Distribution characteristics and toxicity assessment of heavy metals in the sediments of Lake Chaohu, China [J]. Environmental Monitoring and Assessment, 2011,179(1-4):431- 442.

[36] 张 蕾.巢湖沉积物重金属污染特征研究[D]. 北京:北京交通大学, 2009.

Zhang L. Characteristics on heavy metal pollution in the Sediments from Lake Chaohu [D]. Beijing: Beijing Jiaotong University, 2009.

[37] 郑志侠,潘成荣,丁 凡.巢湖表层沉积物中重金属的分布及污染评价[J]. 农业环境科学学报, 2011,30(1):161-165.

Zheng Z X, Pan C R, Ding F. Distribution and environmental pollution assessment of heavy metals in surface sediments of Chaohu Lake, China [J]. Journal of Agro-Environment Science, 2011,30(1):161-165.

[38] 王聪慧.巢湖沉积物不同粒径颗粒物中重金属赋存、吸附行为及生态风险评价[D]. 淮南:安徽理工大学, 2020.

Wang C H. Occurrence, adsorption and ecological risk assessment of heavy metals in size-grouped particles of sediments in Chaohu Lake [D]. Huainan: Anhui University of Technology, 2018.

[39] 吴宏满.巢湖沉积物重金属和磷的赋存形态及相互关系初探[D]. 马鞍山:安徽工业大学, 2019.

Wu H M. Study on the fractions of heavy metals and phosphorus and their correlations in sediment from Chaohu Lake [D]. Maanshan: Anhui University of Technology, 2019.

[40] Fang T, Lu W, Cui K, et al. Distribution, bioaccumulation and trophic transfer of trace metals in the food web of Chaohu Lake, Anhui, China [J]. Chemosphere, 2019,218:1122-1130.

[41] 白 兵.基于GIS和多元变量模型的洞庭湖沉积物中重金属的空间风险评价和来源解析[D]. 长沙:湖南大学, 2013.

Bai B. Spatial risk assessment and integrated source apportionment of heavy metals in sediment from the Dongting Lake based on GIS and multivariate models [D]. Changsha: Hunan University, 2011.

[42] Bi B, Liu X, Guo X, et al. Occurrence and risk assessment of heavy metals in water, sediment, and fish from Dongting Lake, China [J]. Environmental Science and Pollution Research, 2018,25(34):34076- 34090.

[43] 李芬芳,符 哲,李利强,等.洞庭湖表层沉积物重金属污染状况评估[J]. 环境化学, 2017,36(11):2462-2471.

Li F F, Fu Z, Li L Q. Assessment on heavy metal pollution in the surface sediments of Dongting Lake [J]. Environmental Chemistry, 2017,36(11):2462-2471.

[44] 李 飞,黄瑾辉,曾光明,等.基于梯形模糊数的沉积物重金属污染风险评价模型与实例研究[J]. 环境科学, 2012,33(7):2352-2358.

Li F, Huang J H, Zeng G M, et al. Assessment model for heavy metal pollution in sediment based on trapezoidal fuzzy Numbers and case study [J]. Environment Science, 2012,33(7):2352-2358.

[45] Li F, Huang J, Zeng G, et al. Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China [J]. Journal of Geochemical Exploration, 2013, 132:75-83.

[46] 李利强,王丑明,张 屹,等.洞庭湖大型底栖动物与表层沉积物重金属研究[J]. 生态环境学报, 2016,25(2):286-291.

Li L Q, Wang C M, Zhang Y, et al. Study of macrozoobenthos and heavy metals of surface sediment in Dongting Lake [J]. Ecology and Environmental Sciences, 2016,25(2):286-291.

[47] 连 花,郭 晶,黄代中,等.洞庭湖表层沉积物中重金属变化趋势及风险评估[J]. 环境科学研究, 2019,32(1):126-134.

Lian H, Guo J, Huang D Z, et al. Variation trend and risk assessment of heavy metals in surface sediments of Dongting lake. Research of Environmental Sciences, 32(1):126-134.

[48] Wang L, Dai L, Li L, et al. Multivariable cokriging prediction and source analysis of potentially toxic elements (Cr, Cu, Cd, Pb, and Zn) in surface sediments from Dongting Lake, China [J]. Ecological Indicators, 2018,94:312-319.

[49] 谢意南,欧阳美凤,黄代中,等.洞庭湖及其入湖口沉积物中重金属的污染特征、来源与生态风险[J]. 环境化学, 2017,36(10):2253-2264.

Xie Y N, Ouyang M F, Huang D Z, et al. Pollution characteristics, sources and ecological risk of heavy metals in sediments from dongting lake and its lake inlets [J]. Environmental Chemistry, 2017, 36(10):2253-2264.

[50] Yao Z, Bao Z, Gao P. Environmental assessments of trace metals in sediments from dongting lake, central China [J]. Journal of China University of Geosciences, 2006,17(4):310-319.

[51] 张光贵.洞庭湖表层沉积物营养物质污染特征与生态风险评价[J]. 生态科学, 2016,35(1):161-166.

Zhang G G. Pollution characteristics and ecological risk assessment of surface sediment nutrients in Dongting Lake [J]. Ecological Science, 2016,35(1):161-166.

[52] 尹宇莹,彭高卓,谢意南,等.洞庭湖表层沉积物中营养元素、重金属的污染特征与评价分析[J]. 环境化学, 2021,40(8):2399-2409.

Yin Y Y, Peng G Z, Xie Y N, et al. Characteristics and risk assessment of nutrients and heavy metals pollution in sediments of Dongting Lake [J]. Environmental Chemistry, 2021,40(8):2399-2409.

[53] 赵艳民,秦延文,曹 伟,等.洞庭湖表层沉积物重金属赋存形态及生态风险评价[J]. 环境科学研究, 2020,33(3):572-580.

Zhao Y M, Qin Y W, Cao W, et al. Speciation and ecological risk of heavy metals in surface sediments of Dongting Lake [J]. Research of Environmental Sciences, 2020,33(3):572-580.

[54] 孟 婉,刘 扬,朱士江,等.洞庭湖流域沉积物重金属分布特征及其生态风险[J]. 南水北调与水利科技(中英文), 2021,19(4):739-749.

Meng W, Liu Y. Zhu S J, et al. Distribution and ecological risk of heavy metals in sediment across the Dongting Lake basin [J]. South to-North Water Transfers and Water Science & Technology, 2021, 19(4):739-749,767.

[55] Li D, Wang J, Pi J, et al. Biota-sediment metal accumulation and human health risk assessment of freshwater bivalve Corbicula fluminea in Dongting Lake, China [J]. Environmental Science and Pollution Research, 2019,26(15):14951-14961.

[56] Dai L, Wang L, Li L, et al. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China [J]. Science of the Total Environment, 2018,621:1433-1444.

[57] 弓晓峰,陈春丽,周文斌,等.鄱阳湖底泥中重金属污染现状评价[J]. 环境科学, 2006,(4):732-736.

Gong X F, Chen C L, Zhou W B, et al. Assessment on heavy metal pollution in the sediment of Poyang Lake [J]. Environmental Sciences, 2006,(4):732-736.

[58] 简敏菲,弓晓峰,游 海,等.鄱阳湖水土环境及其水生维管束植物重金属污染[J]. 长江流域资源与环境, 2004,(6):589-593.

Jian M F, Gong X F, You H, et al. Assessment of pollution of heavy metals in water sedimints and aquatic plants in Poyang lake basins [J]. Resources and Environment in the Yangtze Valley, 2004,(6):589-593.

[59] 任 琼,张金池,周莉荫,等.鄱阳湖湿地重金属空间分布特征及分析评价[J]. 江苏农业科学, 2018,46(8):275-278.

Ren Q, Zhang J C, Zhou L Y, et al. Spatial distribution characteristics and assessment of heavy metals in Poyang Lake Wetland [J]. Jiangsu Agricultural Sciences, 2018,46(8):275-278.

[60] Wang M, Liu J, Lai J. Metals pollution and ecological risk assessment of sediments in the Poyang Lake, China [J]. Bulletin of Environmental Contamination and Toxicology, 2019,102(4):511-518.

[61] 伍恒赟,罗 勇,张起明,等.鄱阳湖沉积物重金属空间分布及潜在生态风险评价[J]. 中国环境监测, 2014,30(6):114-119.

Wu H B, Luo Y, Zhang Q M, et al. Spatial distribu tion and potential ecological risk assessment of heavy metals in sedi ments of Poyang Lake [J]. Environmental Monitoring in China, 2014,30(6):114-119.

[62] 李 鸣,刘琪璟.鄱阳湖水体和底泥重金属污染特征与评价[J]. 南昌大学学报(理科版), 2010,34(5):486-489.

Li M, Liu Q J. Characterjstics and assesment of heavy metals Pollution in Poyang Lake. Journal of Nanchang University (Natural Science). 2010,34(5):486-489,494.

[63] 彭小明,吴 鑫,汪志军.鄱阳湖表层沉积物重金属污染特征及风险评价[J]. 江西化工, 2019,(5):3-4.

Peng X M, Wu X, Wang Z J. Characterjstics and assesment of heavy metals Pollution in surface sediments of Poyang Lake. Jiangxi Chemical Industry 2019,(5):3-4.

[64] 张小龙.鄱阳湖沉积物—植物体系中重金属的分布特征及生态风险研究[D]. 南昌:南昌大学, 2021.

Zhang X L. Study on the distribution characteristics and ecological risks of heavy metals in the sediment-plant system of Poyang Lake [D]. Nanchang: Nanchang Univeristy, 2021.

[65] 袁少芬,弓晓峰,江 良,等.鄱阳湖沉积物重金属生态风险评价:SQGs和AVS-SEM模型法[J]. 土壤通报, 2020,51(1):234-240.

Yuan S F, Gong X F, Jiang L, et al. Ecological risk assessment of heavy metals in sediments of Poyang Lake: SQGs and AVS-SEM Models [J]. Chinese Journal of Soil Science, 2020,51(1):234-240. DOI:10.19336/j.cnki.trtb.2020.01.32.

[66] 王琳杰,曾贤刚,段存儒,等.鄱阳湖沉积物重金属污染影响因素分析——基于STIRPAT模型[J]. 中国环境科学, 2020,40(8):3683-3692.

Wang L J, Zeng X G, Duan C R, et al. Analysis on influencing factors of heavy metal pollution in sediments of Poyang Lake based on STIRPAT Model [J]. China Environmental Science, 2020,40(8):3683- 3692.

[67] 江 良.鄱阳湖沉积物重金属质量基准研究[D]. 南昌:南昌大学, 2020.

Jiang L. Study on the sediment quality guidelines for heavy metals in Poyang Lake, China. [D]. Nanchang: Nanchang Univeristy, 2020.

[68] Yin J, Liu Q, Wang L, et al. The distribution and risk assessment of heavy metals in water, sediments, and fish of Chaohu Lake, China [J]. Environmental Earth Sciences, 2018,77(3):97.

[69] Muller G. Index of geoaccumulation in sediments of the Rhine River [J]. Geojournal, 1969,(2):108-118.

[70] Hakanson L. An ecological risk index for aquatic-pollution control-a sedimentological approach [J]. Water Research, 1980,14(8):975-1001.

[71] 徐争启,倪师军,庹先国,等.潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008,(2):112-115.

Xu Z Q, Ni S J, Tuo X G, et al. Calculation of heavy metals’toxicity coefficient in the evaluation of potential ecological risk inde [J]. Environmental Science & Technology, 2008,(2):112-115.

[72] Ginebreda A, Kuzmanovic M, Guasch H, et al. Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: Compound prioritization, mixture characterization and relationships with biological descriptors [J]. Science of the Total Environment, 2014,468:715-723.

[73] Pedersen F, Bjornestad E, Andersen H V, et al. Characterization of sediments from Copenhagen Harbour by use of biotests [J]. Water Science and Technology, 1998,37(6/7):233-240.

[74] Macdonald D D, Ingersoll C G, Berger T A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems [J]. Archives of Environmental Contamination and Toxicology, 2000,39(1):20-31.

[75] 王龙凤.南四湖表层沉积物中典型重金属污染研究[D]. 济南:济南大学, 2014.

Wang L F. Study on typical heavy metals pollution in the surfacesediments of Nansi Lake [D]. Jinan: University of Jinan, 2014.

[76] 张兆永,吉力力·阿不都外力,姜逢清.艾比湖表层沉积物重金属的来源、污染和潜在生态风险研究[J]. 环境科学, 2015,36(2):490-496.

Zhang Z Y,Jilli Abuduwaili, Jiang F Q. Sources, pollution statue and potential ecological risk of heavy metals in surface sediments of Aibi Lake, Northwest China [J].Environmental Sciences, 2015,36(2): 490-496.

[77] 丁之勇,蒲 佳,吉力力·阿不都外力.中国主要湖泊表层沉积物重金属污染特征与评价分析[J]. 环境工程, 2017,35(6):136-141.

Ding Z Y, Pu J,Jilli Abuduwaili.Heavy metal contamination characyistics and its Jassessment in Surface sediment of major lakes in China [J].Environmental Engineering, 2017,35(6):136-141.

[78] 李莹杰,张列宇,吴易雯,等.江苏省浅水湖泊表层沉积物重金属GIS空间分布及生态风险评价[J]. 环境科学, 2016,37(4):1321-1329.

Li Y J, Zhang L Y, Wu Y W, et al. GIS spatial ditribution and ecological risk assessment of heavy metals in surface sediments of shallow lakes in Jiangsu Province [J]. Environmental Sciences, 2016, 37(4):1321-1329.

[79] 陈兴仁,陈富荣,贾十军,等.安徽省江淮流域土壤地球化学基准值与背景值研究[J]. 中国地质, 2012,39(2):302-310.

Chen X R, Chen F R, Jia S J, et al. Soil geochemical baseline and background in Yangtze River-Huaihe River basin of Anhui Province [J]. Geology in China, 2012,39(2):302-310.

[80] 张建新.洞庭湖区土壤地球化学基准值与污染等级划分[J]. 物探与化探, 2014,38(4):793-799.

Zhang J X. Soil geochemical baseline and pollution level division in Dongting lake area [J]. Geophysical and Geochemical Exploration, 2014,38(4):793-799.

[81] 中国环境监测总站.中国土壤元素背景值[M]. 北京:中国环境科学出版社, 1990.

China National Environmental Monitoring Centre. Background values of soil elements in China [M]. Beijing: China Environmental Press, 1990.

[82] Niu Y, Jiao W, Yu H, et al. Spatial evaluation of heavy metals concentrations in the surface sediment of Taihu Lake [J]. International Journal of Environmental Research and Public Health, 2015,12(12): 15028-15039.

[83] Peris M, Recatala L, Mico C, et al. Increasing the knowledge of heavy metal contents and sources in agricultural soils of the European Mediterranean region [J]. Water Air and Soil Pollution, 2008,192(1- 4):25-37.

[84] 闫 湘,王 旭,李秀英,等.我国水溶肥料中重金属含量、来源及安全现状[J]. 植物营养与肥料学报, 2016,22(1):8-18.

Yan X, Wang X, Li X Y, et al. Contents,source and safety status of major heavy metals in water-soluble fertilizers in China [J]. Journal of Plant Nutrition and Fertilizer, 2016,22(1):8-18.

[85] Kemp K. Trends and sources for heavy metals in urban atmosphere [J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 2002,189:227-232.

[86] Ewen C, Anagnostopoulou M A, Ward N I. Monitoring of heavy metal levels in roadside dusts of Thessaloniki, Greece in relation to motor vehicle traffic density and flow [J]. Environmental Monitoring and Assessment, 2009,157(1-4):483-498.

[87] 邵 莉,肖化云,吴代赦,等.交通源重金属污染研究进展[J]. 地球与环境, 2012,40(3):445-459.

Shao L, Xiao H Y, Wu D S, et al. Review on research on Traffic- Related heavy metals pollution [J]. Earth and Environment, 2012,40(3): 445-459.

[88] 曾祥英,王 晨,于志强,等.湘江岳阳段沉积物重金属污染特征及其初步生态风险评估[J]. 地球化学, 2012,41(1):63-69.

Zeng X Y, Wang C, Yu Z Q, et al. The occurrence, distribution and preliminary risk assessment of heavy metals in sediments from Xiangjiang River (Yueyang Section) [J]. Geochimica, 2012,41(1):63- 69.

[89] 刘耀驰,高 栗,李志光,等.湘江重金属污染现状、污染原因分析与对策探讨[J]. 环境保护科学, 2010,36(4):26-29.

Liu Y C, Gao S, Li Z G, et al. Analysis on heavy metals pollution status and reasons in Xiangjiang river and discussion on its countermeasures [J]. Environmental Protection Science, 2010,36(4): 26-29.

[90] 罗 慧,刘秀明,王世杰,等.中国南方喀斯特集中分布区土壤Cd污染特征及来源[J]. 生态学杂志, 2018,37(5):1538-1544.

Luo H, Liu X M, Wang S J, et al. Pollution characteristics and sources of cadmium in soils of the karst area in South China [J]. Chinese Journal of Ecology, 2018,37(5):1538-1544.

[91] 颜川云.湘江株洲段河岸沉积物重金属污染来源与评价[J]. 内江师范学院学报, 2018,33(12):73-78.

Yan C Y. Origin and evaluation of heavy metal contamination in riparian sediments from zhuzhou section of Xiangjiang River [J]. Journal of Neijiang normal University, 2018,33(12):73-78.

[92] Allen H E, Fu G M, Deng B L. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments [J]. Environmental Toxicology and Chemistry, 1993,12(8):1441-1453.

[93] Wang H, Zhao Y, Liang D, et al. 30+year evolution of Cu in the surface sediment of Lake Poyang, China [J]. Chemosphere, 2017,168: 1604-1612.

[94] Teng Y, Ni S, Wang J, et al. A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area, China [J]. Journal of Geochemical Exploration, 2010,104(3):118-127.

Mate analysis of heavy metal pollution in sediments of Chaohu Lake, Dongting Lake and Poyang Lake.

LI He, WANG Shu- hang, CHE Fei-fei, JIANG Xia, NIU Yong*

(National Engineering Laboratory for Lake Pollution Control and Eeological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)., 2023,43(2):831~842

The study analyzed the heavy metal concentrations of Chaohu Lake,Dongting Lake and Poyang Lake sediment from 2004 to 2021, and conduct the Monte Carlo uncertainty analysis of geoaccumulation, potential ecological risk and toxicity heavy metal of the three lakes to objectively and comprehensively describe the contamination degree. The results showed that,the three lakes were polluted by Cu, Zn, Pb, Ni, Cr and Cd in different degrees and followed with the order: Poyang Lake > Dongting Lake > Chaohu Lake. The geoaccumulation indices showed that Cd is the dominant pollutant in all three lakes, and the probabilities were 84.76% for moderatesediment contamination, in Chaohu Lake, 32.64% for heavy sediment contamination in Dongting Lake and 46.64% for heavy sediment contamination in Poyang Lake respectively. Cd contribute most to the potential ecological risks index (RI), and its proportion in the Chaohu lake, Dongting lake and Poyang lake were 80.26%、91.04% and 90.03%, respectively. Chaohu lake were at low-moderate risk, Dongting lake take the 60.74% possibility of high risk and Poyang lake take 68.95% possibility of high risk. Toxicity unit evaluation results indicated that Pb and Cr were the main contributor of toxicity in three Lakes sediment. The toxicity of heavy metals was observed the low level in the Chaohu lake and Dongting lake, but the moderate leve in Poyang lake with a 69.03% cumulative probability. The heavy metals of surface sediments in Chaohu lake, Dongting lake and Poyang Lake mainly derived from industry, transportation, agriculture and natural sources. The heavy metal contaminatio of Chaohu Lake mainly came from transportation, while Dongting lake and Poyang Lake mainly came from industry.

Chaohu lake;Dongting lake;Poyang lake;heavy metal;pollution assessment

X524

A

1000-6923(2023)02-0831-12

李 贺(1998-),男,山东聊城人,中国环境科学研究院硕士研究生,主要研究方向为湖泊沉积物重金属.

2022-06-27

国家自然科学基金资助项目(41807494)

* 责任作者, 副研究员, niu.yong@craes.org.cn

猜你喜欢

巢湖鄱阳湖洞庭湖
鄱阳湖水系之潦河
洞庭湖
轻松松聊汉语 洞庭湖
《鄱阳湖生态系列插画》
Always be gr atef ul
鄱阳湖好风光
好一个洞庭湖
洞庭湖的麋鹿
巢湖玉卮意蕴长
华能巢湖电厂脱硝系统的改造