APP下载

特高含水期油藏井网调整开发效果三维物理模拟实验研究

2023-02-17姚秀田苏鑫坤盖丽鹏崔传智

油气地质与采收率 2023年1期
关键词:采出程度井网模拟实验

姚秀田,苏鑫坤,郑 昕,马 军,盖丽鹏,崔传智

(1.中国石化胜利油田分公司孤岛采油厂,山东东营257231;2.中国石油大学(华东)石油工程学院,山东青岛266580;3.中国石化胜利油田分公司油气开发管理中心,山东东营257001)

水驱油藏进入特高含水期后,井网调整能够有效的改变流线、进一步提高采收率;井网调整方向主要分为两部分:井网抽稀与井网加密[1-5]。目前关于井网加密的研究较多[6-12],最小注采井距已经达到80 m,接近井网加密经济极限,另外井网加密后高耗水现象更加凸显,反而部分区块实施井网抽稀后控水稳油效果较为显著。井网抽稀的研究主要建立在数值模拟的基础上[13-16]。赖书敏等针对胜利油区中高渗透砂岩油藏的典型单元,在精细地质特征研究和数值模拟研究的基础上,根据单元现井网和剩余油分布特点,在最大限度利用老井的情况下,模拟井网抽稀后的开发过程,研究结果表明,井网抽稀后能提高水驱采收率2.64%[14];卢云霞等在描述各小层不同时期水淹特征的基础上,明确油水井连通状况及见水优劣势方向,评价主力层剩余油潜力区;并针对剩余油分布规律,提出井网抽稀改变液流方向以达到改善主力层开发效果的目的[15];李明松在评价井网适应性的基础上,提出了对注水水淹层井网进行抽稀,以解决平面矛盾、改善开发效果,提高原油采收率[16]。以上关于井网抽稀的研究均是运用数值模拟技术,在分析剩余油的基础上,开展井网抽稀以改变流线,最终达到控制含水率、提高采收率的目的。这些研究均没有涉及到物理模拟实验。

笔者采用自主搭建的3D 水驱物理模拟实验装置,开展了基础井网、井网抽稀及井网加密等多种水驱油物理模拟实验,对比分析井网调整形式、注水速度、抽稀/加密后提液等因素对饱和度剖面及采出程度的影响,对完善特高含水期油藏井网调整方式进行了有益的探索。

1 实验设计

1.1 实验参数的获取

可视化物理模拟实验就是利用相似准则[17]将实际油藏的各类参数转换成室内实验参数,这样就可以将油藏较长时间的生产过程转化为较短时间内的可视化物理模拟过程,从而便于直观地对开发效果进行分析,为油田生产提供有效参考方案。

矿场参数中井距为250 m,排距为125 m,储层厚度为10 m,原油黏度为32 mPa·s,模型注入速度(4个五点法井网)为480~800 m3/d,对应的实验参数中井距为12.5 cm,排距为6.25 cm,储层厚度为5 cm,原油黏度为1.6 mPa·s,模型注入速度(4 个五点法井网)为16.67~24.31 mL/min(表1)。

表1 矿场参数与实验参数转换结果Table1 Conversion results of field parameters and experimental parameters

1.2 实验装置及实验方案

自主搭建的3D 水驱物理模拟实验装置由真空泵、ISCO 驱替泵、3D 填砂模型装载器(长×宽×高为30 cm×30 cm×5 cm)、油水分离装置、注入管线、采出管线及饱和油管线等组成(图1)。运用该装置开展不同注水速度条件下的井网抽稀、井网加密及基础井网(不进行井网调整)水驱实验,井网调整形式见图2,基础井网是井距为15 cm 的正方形五点法井网,加密井网是井距为7.5 cm的正对井排,抽稀井网是井距为15 cm 的矩形五点法井网。模型整体注入速度为16 和24 mL/min,石英砂有20 目、40 目及80目,实验用油为稀释后的原油,黏度为1.6 mPa·s,每组实验累积注水量为1 900 mL。

图1 3D水驱物理模拟实验装置Fig.1 3D waterflooding physical simulation device

图2 井网调整形式示意Fig.2 Adjustment of well pattern

1.3 实验步骤

水驱实验分为5 个步骤:①正韵律3D 可视化物理模型制作。将不同粒径石英砂分别倒入烧杯中,记录其体积,再向烧杯中倒入原油,记录原油的体积,用玻璃棒不断搅拌,使石英砂与原油充分混合,再用保鲜膜覆盖烧杯口,使石英砂与原油充分接触,静置大概1 h后,3D可视化物理模型所用油砂配制完成。将配制好的大粒径油砂(20 目)均匀铺至模型底部,先用铲刀将砂体表面抹平,再用压实板将砂体均匀压实;然后将配制好的中粒径油砂(40目)均匀铺置、压实在已铺置的砂体上;之后再将配制好的小粒径油砂(80 目)均匀铺置、压实在已铺置的砂体上,最终形成正韵律3D 可视化物理模型(图3a)。该模型的渗透率从底部到顶部分别为2 500,1 000 及250 mD;各层的厚度相同,且总厚度为5 cm。②模型管线制作与连接。正韵律3D 可视化物理模型内水井端使用侧壁全井段打孔的管线,油井端使用侧壁顶端打孔的管线(图3b),将制作好的管线按设计的井网类型填埋在模型中相应位置,并将管线埋入模型的端口套上滤砂网,以保证管线不会被砂堵死。每根管线连接一个阀门,实现油水井的开关。③物理模型饱和油。先抽真空,再向中间容器内倒入一定量的原油,将其密封好;设定水泵的限制压力为1 MPa、注入速度为2 mL/min,将中间容器内的原油饱和进模型中。待压力升高至0.9 MPa左右后,测试井管线是否通畅:将井管线阀门轮换打开,确保每口井管线正常出液。记录各井管线在测试时所产出的原油体积。模型老化24 h,使模型内压力和原油均匀分布,待水驱实验所用。④水驱油物理模拟实验。实验包括基础井网与井网调整(井网加密与井网抽稀)水驱实验,实验各井采用定流量条件工作。其中,基础井网水驱实验设定水泵的限制压力与总注入速度,开启ISCO驱替泵进行水驱油物理模拟实验,在油井出口端放置100 mL 量筒,每隔10 分钟记录一次单井累积产液量与产水量,驱替至油井含水率近100%。井网调整水驱实验与基础井网水驱实验相似,不同之处在于:水驱至某一时刻(含水率为90%),进行井网调整(井网加密或者抽稀),然后水驱至油井含水率近100%。⑤实验数据处理与结果分析。基于记录的饱和油量、累积产液量、累积产水量等数据,计算获得采出程度曲线;同时通过切割物理模型砂体(图3c),获得水驱结束后的饱和度剖面;并运用像素识别软件,在设定未饱和油时储层颜色为0,饱和油完成时储层颜色为1的条件下,获得剖面饱和度。

图3 水驱实验示意Fig.3 Waterflooding experiment

2 实验结果与分析

共开展了6 组水驱物理模拟实验,分别为基础井网水驱物理模拟实验、井网加密水驱物理模拟实验、井网抽稀水驱物理模拟实验、注入速度增加的井网抽稀水驱物理模拟实验、抽稀后提液的井网抽稀水驱物理模拟实验、加密后提液的井网加密水驱物理模拟实验(表2)。

表2 水驱实验对比分析Table2 Comparative analysis of waterflooding experiments

2.1 井网调整开发效果对比

对比实验1,2,3研究井网调整对开发效果的影响。由注入速度为16 mL/min 时各井网调整形式水驱开发结束后的饱和度剖面与采出程度(图4,图5)可知,对正韵律储层,无论是何种井网调整形式,底部水洗严重(呈白色),顶部水洗较弱(呈黑色)。与基础井网相比,井网抽稀后的单井注入速度、井距增加。对于全射孔的注水井,单井注入速度增加将导致纵向波及面积增加,但井距增加又会使波及面积降低,两者综合作用导致基础井网水驱结束后的饱和度剖面波及面积与井网抽稀的饱和度剖面波及面积大小相当;且随着全井段射孔注水的注入速度增加,顶部水洗程度增强,顶部含油饱和度降低了0.06(为0.56)。井网加密后虽然单井注入速度降低,但井距减小;井网加密水驱结束后的波及面积大,但其顶部含油饱和度(0.70)要比基础井网水驱结束后的顶部含油饱和度(0.62)大。各井网调整形式的采出程度变化规律相似,随着开发时间的推移,采出程度先线性增加后趋于平缓;从最终采出程度看,井网抽稀后的最大,其次是井网加密后的,最小的是基础井网的。与基础井网的最终采出程度相比,井网抽稀的提高了近3.01%,井网加密的提高了2.12%。

图4 注入速度为16 mL/min的水驱结束后饱和度剖面Fig.4 Saturation profile after waterflooding at an injection rate of 16 mL/min

图5 注入速度为16 mL/min的各井网类型的采出程度Fig.5 Recovery under each well pattern at injection rate of 16 mL/min

从以上分析可知,在注采条件、储层物性条件相同的情况下,与基础井网相比,井网抽稀开发后的正韵律储层顶部动用程度大,最终采出程度高;井网加密的波及系数最大,但是其在相同注水量情况下的洗油程度弱,导致其最终采出程度小于井网抽稀的。特高含水期井网抽稀开发效果最好,其次是井网加密,最差的是基础井网。

2.2 不同注入速度的井网抽稀开发效果对比

对比实验3,4研究不同注入速度对井网抽稀开发效果的影响。从图6 与图7 可知,对正韵律储层,当注入速度从16 mL/min 增加至24 mL/min 时,井网抽稀水驱结束后的饱和度剖面均表现为底部呈白色、水洗严重,顶部呈黑色、水洗较轻的特征。高注入速度的饱和度剖面顶部含油饱和度(0.54)要低于低注入速度的(0.56),且高注入速度的饱和度剖面波及面积比低注入速度的大27.83%。在累积注水量相同的情况下,注入速度越大,最终采出程度越大;高注入速度的最终采出程度比低注入速度的提高了4.77%。从以上分析可知,在累积注水量一定、注入与采出平衡条件下,水驱注入速度越大,波及面积越大、纵向驱替越均匀,最终采出程度越高。

图6 不同注入速度井网抽稀水驱结束后饱和度剖面Fig.6 Saturation profile after waterflooding under thinned well pattern at different injection rates

图7 不同注入速度的井网抽稀水驱采出程度对比Fig.7 Comparison of recoveries under thinned well pattern at different injection rates

2.3 井网抽稀/加密后提液开发效果对比

对比实验2,3,5,6 研究井网抽稀/加密后不提液与提液对开发效果的影响。由井网抽稀后提液与不提液的饱和度剖面和采出程度(图8,图9)可知,虽然井网抽稀后不提液饱和度剖面顶部含油饱和度(0.56)小于井网抽稀后提液的(0.71),但井网抽稀后提液的波及面积比不提液的大24.12%。在累积注水量相同的情况下,井网抽稀后提液的最终采出程度比不提液的高2.52%。

图8 井网抽稀后提液与不提液水驱结束后饱和度剖面Fig.8 Saturation profiles after waterflooding with and without increased liquid production after well pattern thinning

图9 井网抽稀后提液与不提液采出程度对比Fig.9 Comparison of recoveries with and without increased liquid production after well pattern thinning

从井网加密后提液与不提液的饱和度剖面和采出程度(图10,图11)可知,井网加密后提液的饱和度剖面顶部含油饱和度(0.73)大于不提液的(0.70),但是后者的波及面积更大,因此在累积注水量相同的情况下,井网加密后提液的最终采出程度比不提液的高1.49%。同时对比井网加密后提液与井网抽稀后提液的最终采出程度可知,在累积注水量相同的情况下,井网抽稀后提液的最终采出程度比井网加密后提液的高1.99%。

图10 井网加密后提液与不提液水驱结束后饱和度剖面Fig.10 Saturation profiles after waterflooding with and without increased liquid production after well pattern infilling

图11 井网加密后提液与不提液采出程度对比Fig.11 Comparison of recoveries with and without increased liquid production after well pattern infilling

从以上对比分析可知,井网调整后(加密/抽稀)提液可以在井网调整的基础上进一步扩大水驱波及系数、提高采出程度,且由于井网加密后提液的正韵律储层底部水洗程度要弱于井网抽稀后提液的,因此井网抽稀后提液的开发效果要比井网加密后的提液的开发效果更好。

3 讨论

从提高采收率机理、井网抽稀应用条件及矿场指导意义等3 个方面,讨论特高含水期油藏井网调整开发效果三维物理模拟实验结果。

井网调整提高采收率机理 不同的井网形式决定了不同的压力场与流场分布,进而决定了不同的波及体积与驱油效率,对于井网加密而言,通过增加累积注水量、采液井点可以有效提升原井网弱波及部位的驱替压力梯度,如正韵律厚油层顶部,使得油层纵向动用程度更均衡,但由于注采井距较小,在一段时间后易形成优势渗流通道,又制约了整体采收率;对于井网抽稀而言,在扩大注采井距的同时保持与井网加密相同的注入、采出强度,可以实现更均衡的流场分布、保持与井网加密相同的驱替压力梯度,但由于注采井距相对较大,高耗水流线更不易形成,再开展提注提液可以改善油层纵向波及状况,从而获得更高的采收率。

井网抽稀的应用条件 井网抽稀的做法尤其适用于特高含水后期水驱油藏开发,开发后期井网老化、高耗水层带发育的现象较为普遍,可以通过层系间补孔改层、大修、侧钻等措施确保油气资产利用效率来实现井网抽稀;为抑制极端高耗水层带,常规的井网转换需要配套较多的新井工作量投入,井网抽稀后的注采井距较大,能够有效规避极端高耗水层带,再提液后可以通过压力传导实现油藏中更为均衡的流场分布。

矿场指导意义 特高含水后期延长经济寿命期的必要条件是经济采收率,井网调整的方向决定了开发成本,井网加密需较高的投资支撑,在特高含水后期平均单井产能相对较低的情况下效益难以保证;井网抽稀在技术上能够实现更均衡的流场分布、保持较高的驱替压力梯度,在经济上可以通过层系间补孔改层实现,所需的投入较小,因此具有较强的技术和经济适应性。

4 结论

与基础井网相比,井网抽稀与井网加密的水驱开发效果更好,且井网抽稀的水驱开发效果比井网加密好。对正韵律储层,当累积注水量相同时,不同方式井网调整后,均表现为注入速度越大、水驱波及系数越大、驱替越均匀,最终采出程度越大,即提高注入速度有益于提高水驱采收率。当累积注水量相同时,井网调整后提液的采收率要比不提液的高;且井网抽稀后提液比井网加密后提液的采收率更高、开发效果更好。

猜你喜欢

采出程度井网模拟实验
延长油田南部长8致密油藏注CO2吞吐实验
断块油藏注采耦合物理模拟实验
采出程度对内源微生物驱油效果的影响研究
超低渗透油藏水平井注采井网设计优化研究
聚合物驱油田交替注聚参数优化研究
各向异性油藏菱形反九点井网合理井排距研究
输气管道砂冲蚀的模拟实验
射孔井水力压裂模拟实验相似准则推导
二氧化碳驱油注入方式优选实验
弹道修正模拟实验装置的研究