APP下载

松嫩平原中更新世以来气候干旱化
——来自哈尔滨黄土记录

2023-01-13赵倩谢远云郝冬梅迟云平康春国吴鹏刘硕

沉积学报 2022年6期
关键词:磁化率沙地同位素

赵倩,谢远云,2,郝冬梅,迟云平,2,康春国,吴鹏,刘硕

1.哈尔滨师范大学地理科学学院,哈尔滨 150025

2.哈尔滨师范大学寒区地理环境监测与空间信息服务黑龙江省重点实验室,哈尔滨 150025

3.哈尔滨学院地理系,哈尔滨 150086

0 引言

亚洲内陆干旱化作为当今地球科学领域极为重要的科学问题,不仅是新生代北半球古气候演化的一个重要组分[1],也是新生代全球气候恶化的重要标志[1-3],对区域乃至全球气候环境演变至关重要,是研究全球海陆气候耦合变化关键的连接纽带[1-3]。探究亚洲内陆干旱化历史对于理解区域及全球气候变化,管理环境及组织社会和经济活动等至关重要[4]。

黄土作为第四系典型地表风成沉积物,蕴含丰富的地质信息,具有沉积连续、分布广泛和时间跨度大的特性,是与深海沉积物、极地冰芯相媲美的古气候地质档案[5-8]。尤其是位于沙漠—沙地下风向地区的黄土堆积,与沙漠—沙地的形成和演化具有极好的耦合关系[9-10],可以很好地指示沙漠—沙地演化进程。目前黄土的粒度组成、磁化率、有机碳同位素、Sr-Nd同位素、孢粉和色度等指标被广泛用于反演沙漠—沙地的形成演化以及重建亚洲内陆阶段性干旱化历史[7,11-14],并在中国西北地区的干旱化研究中取得丰硕成果[7,15-16],但是对于干旱化的时间、进程以及驱动机制等关键性科学问题仍存在较大争议[11,16]。

松嫩平原位于欧亚干旱—半干旱带最东端,较高的纬度使其受极地冰盖影响极大,对气候波动十分敏感,是研究中国东北地区气候干旱化的理想区域。然而由于松嫩平原缺乏沉积档案露头,岩心也多为更古老的深时地层和油气资源探测[17-18],缺乏对于第四系沉积地层的精细属性研究[19],并导致古气候演化的研究极为薄弱,显著限制了黄土堆积对松嫩平原构造—地貌—水系演化—气候变化的响应及其耦合机制的理解。哈尔滨荒山剖面位于松花江二级河流阶地之上,是松嫩平原东部最为典型的第四系模式剖面,很多标准地层单位在此建立和类比,是研究风成黄土堆积与河湖演化相互作用的优秀档案。

因此,本文拟通过对哈尔滨黄土进行沉积特征以及粒度、磁化率、总有机碳和Sr-Nd同位素组成分析,结合粒度端元和小波分析,探究松嫩平原干旱化历史进程以及驱动机制,为亚洲内陆干旱化向东拓展提供重要证据。

1 研究区域概况

松嫩平原地处黑龙江省西南部(图1),属温带季风气候区,冬季受西北寒冷气流控制,夏季则受来自太平洋的西南暖湿气流影响。年平均气温为2 ℃~4 ℃,年降水量350~700 mm。松嫩平原发育在晚侏罗系基底之上,主要由松花江和嫩江冲积形成,是东北平原的最大组成部分。平原整体呈马蹄状分布,地貌单元主要包括东部隆起区、西部台地区和冲积平原区三个部分,北部和东北部与小兴安岭接壤,东部和东南部与长白山接壤,西部邻近大兴安岭,南部是东北平原重要的分界线——松辽分水岭。松辽分水岭海拔不超过250 m,长度近300 km,在大兴安岭和长白山之间,大致沿西北向东南方向延伸(图1a)。

图1 哈尔滨荒山剖面位置图Fig.1 Location of the Huangshan profile in Harbin

松嫩平原的黄土堆积主要位于松嫩沙地的下风向地区,如哈尔滨、双城和阿城等地,其中以哈尔滨荒山(HS)黄土剖面最为典型。荒山位于哈尔滨市道外区团结镇,距哈尔滨市东部约16 km,北望松花江,西临阿什河,山顶海拔198 m,位于松花江二级堆积阶地之上[20-22]。

2 材料与方法

2.1 岩心岩性

由于荒山剖面并未完全出露,地下埋藏深度约40 m,故本文通过岩心钻取,以期获得更加完整的地质资料。岩心钻取采用双管单动内衬塑料套管取心技术,该岩心贯穿第四系,直至白垩系基岩,钻井深度101.11 m,岩心长度93.3 m。结合对荒山剖面的野外观察和钻孔岩心沉积物的沉积相,以30.4 m为界,岩心可分为黄土—古土壤以及河湖相沉积物两部分[20-25],本文主要研究30.4 m以上的风成黄土堆积。岩心30.4 m以上沉积物的岩性描述如下:

(1) 0~0.98 m:暗褐色现代土壤,含较多植物根茎及虫孔,受人类活动和生物扰动明显。

(2) 0.98~30.4 m:依据沉积物岩性及颜色可划分为5个黄土—古土壤旋回,发育铁锰结核和铁锈,无钙质结核。其中古土壤层(S0~S4)为砂质黏土,呈暗灰褐色—灰黑色,含白色菌丝体,结构致密;黄土层(L1~L5)为黄褐色的泥质粉砂,垂直节理发育明显,为典型风成黄土沉积[5]。

2.2 磁化率

以10 cm间距获取288个样品,在室内进行干燥处理后,用研磨棒轻轻敲碎,放入2 cm×2 cm×2 cm立方的弱磁盒中,在中国科学院地球环境研究所黄土与第四纪地质国家重点实验室采用英国Bartington MS2型磁化率仪在低频470 Hz下进行测定。

2.3 总有机碳(TOC)

以10 cm为采样间距,将样品在80 ℃下干燥24 h,然后研磨成粉末,通过200目标准分样筛。将0.8 g样品加入36%盐酸充分反应,以除去碳酸盐,再将样品离心清洗、干燥、充分研磨后,采用TC高温煅烧、检测CO2气体量的方法,测得总有机碳含量,经多次测量得分析误差小于2%。

2.4 Sr-Nd同位素

以40~60 cm间距获取60个样品,自然风干后经研磨过200目标准分样筛,获取小于63 μm组分以供Sr-Nd比值测试。Sr和Nd的分离采用标准离子交换方法。测定的样品分别用86Sr/88Sr=0.119 4和146Nd/144Nd=0.721 9进行标准化质量分馏效应的校正。仪器的准确度采用国际标样NBS987和JMC于中国地质大学(武汉)地质过程与矿产资源国家重点实验室进行测定。

2.5 光释光(OSL)和电子共旋(ESR)测年

把不锈钢管打入新鲜剖面获取测年样品,钢管用黑色塑料袋及胶带包裹,以免见光以及水分流失。样品带回实验室后,在暗室无光条件下进行剖面样品处理,并使用标准石英单片再生计量法从剖面上部选择4个样品进行OSL测年,底部选择3个样品进行ESR测年。OSL测年提纯石英颗粒粒径为90~150 μm,ESR测年提纯的石英颗粒粒径为120~200 μm,具体测年方法详见文献[23-24],结果见表1。

表1 荒山剖面OSL和ESR测年结果Table 1 OSL and ESR dating results of Huangshan profile in Harbin

2.6 粒度分析

以10 cm为间距共采集288个样品,分别加入10% H2O2以及0.5 mol/L HCl进行24 h样品预处理,以分别去除样品中的有机物和碳酸盐。通过超声处理,再使用10% (NaPO3)6溶液对样品进行分散。最后,样品在Malvern Mastersizer 2000激光颗粒分析仪上进行测试,测量范围为0.02~2 000 μm,经多次重复测量误差范围小于2%。

2.7 端元分析

端元模型分析法最早由Weltje提出[26],原理为沉积物由不同物质来源或不同搬运动力经过混合而成,根据一组沉积物粒度数据进行分析计算,将不同动力作用下的端元组分分离出来[26-29],并分析各端元组分所代表的古气候意义[28]。本文采用Matlab软件上开发的AnalySize程序对哈尔滨黄土样品的粒度数据进行分析。

2.8 小波分析

小波分析(Wavelet Analysis)是基于傅里叶变换进一步发展的变换分析方法[29],能够将一个时间尺度上的信号在不同的连续性时间尺度上进行解析,揭示不同时间尺度所蕴含的周期性特点[27]。

3 结果

3.1 磁化率

荒山剖面顶部现代土壤磁化率值相对较高(图2),最 高 值 为94.697×10-8m3/kg,最 低 值 为4.016×10-8m3/kg,平均值为29.067×10-8m3/kg。哈尔滨黄土的磁化率呈现明显周期性的高低变化,且黄土层磁化率高于古土壤层。

3.2 粒度组成

哈尔滨黄土粒度组分(图2)以粗粉砂(16~63 μm)为主,含量为35.11%~62.91%,平均含量为48.09%;其次为细粉砂组分(4~16 μm),含量为18.23%~42.50%,平均值为29.32%;小于4 μm的黏土含量为10.23%~20.96%,平均值为14.97%;大于63 μm的砂粒含量占比2.31%~21.38%,平均值为7.63%;平均粒径为15.15~36.18 μm,黄土层粒度粗于古土壤层。

图2 哈尔滨黄土各粒级组分随深度变化特征Fig.2 Variation of grain size components with depth in Harbin loess

3.3 端元分析

在Matlab软件中导入黄土粒度数据,并假设在1~10个端元的基础上,对数据进行端元分离。随着端元数量的不断增加,粒级复相关系数R2逐渐接近于1(R2在0.8以上表明端元个数基本达到拟合标准)和角度离差逐渐变小的平衡拟合。分析结果可知(图3),当端元数量达到3时,R2达到0.991 5且角度离差极小,说明划分的3个端元组分(EM1、EM2、EM3)之间彼此相互独立,可以满足拟合的需要,因此本文选择3个端元对该组粒度数据分析。

图3 哈尔滨黄土端元数线性相关和角度离差Fig.3 Linear correlation and angular deviation of end members in Harbin loess

哈尔滨黄土分离出三个粒度端元(图4),均呈单峰态,接近正态分布,具有较好的分选性,众数粒径分别为7.81 μm、27.20 μm和54.41 μm。各端元标准偏差依次为EM1>EM2>EM3,峰度表现为EM3>EM2>EM1。

图4 哈尔滨黄土端元粒度频率曲线Fig.4 Grain size frequency curves for loess sediments in Harbin loess

端元含量随深度变化如图5,端元EM1含量为23.86%~76.76%,变化波动较大,在古土壤层中占比相对较高。EM2整体呈现较大波动,含量为0~63.48%,EM3含量为0~55.52%,EM2和EM3含量在黄土层中所占比重较高。总体变化趋势各不相同,EM1无明显变化趋势,端元EM2与EM3呈现相反的变化趋势。

3.4 TOC

相对于黄土层,古土壤层TOC含量相对较高。TOC最高值出现在现代土壤层(1.76%,图5g),最小值出现在L2黄土层(0.04%),其平均含量为0.25%。

3.5 Sr-Nd同位素组成

黄土剖面87Sr/86Sr的比值变化较小(图5e),在0.710 465~0.712 213之间,平均值为0.711 411;εNd(0)在-5.1~-6.9之间(图5f),平均值为-5.9。Sr-Nd同位素值总体变化幅度较小,87Sr/86Sr呈现出逐渐增加的趋势,εNd(0)呈现出逐渐减小的趋势。

图5 哈尔滨黄土环境指标及粒度端元随深度变化(a)磁化率;(b)EM1端元组成;(c)EM2端元组成;(d)EM3端元组成;(e)Sr同位素组成;(f)Nd同位素组成;(g)TOC含量;(h)Rb/Sr比值[25]Fig.5 Changes of environmental index and grain size end members with depth in Harbin Loess

3.6 年龄框架建立

本文采用粒度数据内插方法建立年龄模式,其原理是假设黄土的沉积通量稳定的情况下,依据黄土粒度的变化推算不同时期黄土的沉积速率[30]。其粒度年龄模型为(T1、T2分别为新、老地层的年龄控制点;Ai为i层的粉尘堆积速率;m为所测地层单位年龄;n为T1、T2之间的所有地层):

我们在荒山剖面进行了光释光(OSL)和电子自旋共振(ESR)测年取样。为避免受OSL测年年限及ESR测年精度的限制,利用OSL数据和深海氧同位素阶段(MIS)的转折年龄,即深海氧同位素曲线中具有明显的从峰到谷(间冰期到冰期)快速转变的中点,作为年龄控制点。本研究中,深海氧同位素对应的转折年龄依次为:MIS5/6(130 ka);MIS7/8(243 ka);MIS9/10(337 ka)和MIS11/12(424 ka)[31],分别对应于古土壤层S1、S2、S3和S4的底界。以东亚冬季风强度代用指标(大于30 μm颗粒百分比含量)作为数据[32],通过线性内插的方式,建立荒山剖面黄土—古土壤时间框架(图6)。这种年代框架的建立在黄土高原和赤峰剖面中得到普遍应用[9]。

图6 哈尔滨黄土—古土壤年代框架(a,c)荒山岩心磁化率曲线;(b)北大西洋深海氧同位素[31]Fig.6 Chronological framework of Harbin loess ̄paleosol

需要注意的是,由于ESR年龄结果存在潜在误差,故未作为绝对年龄来使用,仅用来检验建立的年龄框架的准确性。荒山剖面的3个ESR测年年龄均小于500 ka,证明了哈尔滨黄土—古土壤的时间框架是可靠的。根据建立的地层年龄框架,推测哈尔滨荒山黄土的底界年龄为460 ka。

4 讨论

4.1 哈尔滨黄土—古土壤序列特征

哈尔滨黄土—古土壤序列与黄土高原和赤峰的典型黄土沉积相比,存在显著的差异,尤其是古土壤层,呈灰黑色,富含泥质胶结体,缺少钙质结核,且厚度明显薄于邻区的赤峰古土壤层。颜色作为沉积环境的重要特征之一[33-34],受控于沉积物中氧化铁的种类和含量、碳酸盐和有机质含量[35-36]。氧化铁和有机质含量越多颜色越深,碳酸盐含量越多颜色越浅。干热的气候背景下,浅水氧化环境多富集赤铁矿,形成红色沉积地层,如黄土高原的古土壤层[37];深水还原环境中,不利于赤铁矿形成和有机质分解,从而导致深色沉积地层的出现,如黄土高原全新世的S0古土壤层[33,38]。

位于高纬度的哈尔滨地区,受寒冷气候影响,冬季显著长于夏季,且在夏季也仅有表土解冻。这种气候背景使得哈尔滨地区土壤层发育薄弱,广泛发育的永久冻土层使得土壤表层水下渗严重受阻,地表积水严重,土壤潜育化现象明显[39]。在这种条件下,土壤中的赤铁矿的形成受阻,有机质大量富集,土壤颜色进一步加深。

黄土—古土壤序列的磁化率常被用作指示东亚夏季风强度的指标[40],主要受铁磁性矿物影响。铁磁性矿物受控于原始输入和后期成壤作用[41-42],尤其是成壤环境,通过改变铁磁性矿物的种类和含量,进而控制磁化率值[43]。黄土高原降水弱蒸发强,多为氧化成壤环境,有利于铁磁性矿物富集[14,44],因此黄土高原黄土—古土壤序列的磁化率值与成壤作用呈正相关,黄土层磁化率较低,古土壤层磁化率较高[4-5]。

然而,黄土高原黄土—古土壤序列的磁化率特征并不适用于哈尔滨地区,哈尔滨黄土层磁化率呈现高值而古土壤层磁化率为低值,与阿拉斯加和西伯利亚的黄土磁化率变化特征类似[14,44]。研究表明,成壤过程中含水量达到一定阈值时,会形成强还原环境,致使磁性矿物由强磁性向弱磁性转换,使得磁化率值与成壤作用呈负相关关系[14,44]。

综上所述,在气候寒冷、降水充足的哈尔滨地区,成壤过程中存在显著潜育化现象。在寒冷的冰期,地表水极少,土壤表层处于相对氧化或弱还原的环境中,磁性矿物得以良好保存。然而在间冰期,地表水含量增加,冷湿的成土环境导致土壤发育薄弱,并导致磁性矿物由强磁性向弱磁性的转变[23-24]。因此,哈尔滨发育薄弱的灰黑色古土壤层以及古土壤层磁化率值低于黄土层现象,分别反映了高纬度寒冷气候对成壤作用和磁化率值的控制。

4.2 粒度端元的指示意义

哈尔滨黄土是典型风成黄土堆积[23,45-46],其分离出的各粒度端元分别代表着不同的搬运动力背景。EM1组分的众数粒径为7.81 μm。2~16 μm细粉砂组分可在几千米高的大气中悬浮并进行远距离搬运[47],该组分在中国黄土高原地区[48-50]、新疆伊犁地区[47]、欧亚黄土古土壤序列[51-52]中十分常见,代表高空西风所搬运的远源粉尘物质。虽然风化成壤作用亦可产生大量的细颗粒碎屑物质[53],但其粒径通常小于2 μm,且通过与反映风化成壤程度的Rb/Sr对比发现(图5h),EM1和Rb/Sr并无显著相关性,表明EM1组分并非在成壤环境下所形成。同黄土高原东部粉砂组分[47](8 μm)相比较(图7a),峰型相似。因此,EM1组分代表受高空西风控制影响下,自远源搬运的粉尘物质。

哈尔滨黄土EM2众数粒径为27.2 μm。黄土高原众数粒径为16~32 μm的粒度组分是在强风作用下低空搬运的近源物质[54],众数粒径为30 μm的粒度端元代表由尘暴带来的粗颗粒组分[55]。对比中国黄土粗粉砂组分[56](图7b)可以发现,哈尔滨黄土EM2组分峰型与之相似。哈尔滨地处松嫩平原东部,受西伯利亚高压影响较大,所以荒山剖面EM2应该代表冬季风所搬运的远源粉尘物质。

哈尔滨黄土EM3众数粒径为54.41 μm。20~70 μm的粗砂粒度组分被认为是受尘暴影响近距离悬移搬运的组分[48]。与黄土高原东部粗粉砂组分相比,哈尔滨黄土EM3组分峰型与之相似但呈现更宽的频率分布(图7c),且与中值粒径存在显著相关性(图8,相关性系数R2为0.501)。故哈尔滨黄土的EM3可能代表强季风或强尘暴所搬运的粗粉砂组分。

图7 哈尔滨黄土粒度端元与前人结果对比Fig.7 Comparison of end members of Harbin loess with previous research

图8 EM1、EM2、EM3和中值粒径的相关性分析Fig.8 Correlations of EM1, EM2 and EM3 with median grain size

综上所述,EM1代表受高空西风控制下搬运的远源粉尘物质;EM2代表冬季风搬运的远源粉尘物质;EM3代表东亚冬季风影响下以尘暴的方式搬运来的近源粗颗粒组分。其中EM3组分是对气候变化较为敏感的组分,可以指示松嫩沙地的干旱化程度。

4.3 松嫩平原的干旱化进程

黄土沉积和沙漠作为一个耦合系统,分别被认为是沉积区和物源区。沙漠化和干旱化的演变信息被记录在包括风成沙和黄土在内的风成沉积物中。但由于沙漠中的风成沙易受外部条件影响而发生移动,且受后期的侵蚀作用,导致很难直接从沙漠中提取古气候数据,因此沙漠对干旱化指示作用具有限制性。黄土作为一种典型的干旱—半干旱气候条件下的粉尘堆积,常堆积于沙地的下风向,其粉尘的起源、运输和沉积对干旱—半干旱气候以及沙地范围的变化有较好的指示意义[57],因此沙漠边缘的黄土沉积广泛用于重建沙地干旱化历史[4,57-60]。

黄土堆积的开始代表风尘物源区或沉积区气候环境发生了重大变化[61],指示区域或者全球气候干旱化的开始[62]。故岩心30.4 m(460 ka)处沉积环境由湖相沉积向黄土沉积的过渡,意味着研究区自然气候环境发生了巨大变化,指示了黄土源区干旱化的开始。位于松嫩沙地下风向的哈尔滨黄土,主要为近源堆积,松嫩沙地为其统治性的粉尘物源[63-64]。因此,基于哈尔滨黄土的底界年龄,我们认为在460 ka开始,哈尔滨黄土的源区——松嫩平原地区存在明显的干旱化,指示松嫩沙地开始形成。

粒度是黄土研究中常用的环境代用指标,不仅可以很好地反映东亚冬季风的变化[65],而且在一定程度上记录了沙漠的进程演化[57,65],黄土沉积物中的含砂量可以很好地用于反演源区的干旱化及沙漠化进程[66]。然而,需要注意的是,稳定的物质来源是古气候指标重建气候变化的前提。沉积物的Nd同位素组成,具有极高的稳定性,基本继承母岩的特征[67-69];哈尔滨黄土Nd同位素与平均粒径的弱相关性表明(图9c,相关性系数R2为0.32),哈尔滨黄土的Sr、Nd同位素受粒度变化和气候波动影响极小,故哈尔滨黄土的Nd同位素可被用做沉积物来源和迁移的示踪剂。哈尔滨黄土的Nd同位素值非常稳定(图5f),同松嫩沙地Nd同位素值(-11.0~-4.8)相比较[64],哈尔滨黄土的Nd同位素值变化范围仅仅在-6.9~-5.7之间,变化幅度十分有限,表明哈尔滨黄土的粉尘物源自460 ka以来较为稳定,未发生改变,这也进一步证实了哈尔滨黄土沉积物中粒度的粗细变化是气候变化所引起,而非物源改变导致。

图9 哈尔滨黄土Rb/Sr、Sr同位素、Nd同位素与中值粒径的相关性分析Fig.9 Correlations of Rb/Sr, Sr isotope, Nd isotope and median diameter of Harbin loess

在气候变化是哈尔滨黄土粒度变化的主控因素前提下,哈尔滨黄土大于63 μm与EM3组分可以很好地指示松嫩沙地边缘的进退以及气候波动(图10a,b)。粒度指标在300 ka和380 ka存在两次快速增加现象,反映了松嫩沙地在该时期发生两次明显干旱化加剧事件——沙地存在两次显著扩张。并且松嫩沙地300 ka的干旱化加剧事件,在赤峰黄土和北京矾山黄土中也有所体现(图10c,d)[9,70],该时期赤峰黄土和矾山黄土大于63 μm粒度组分显著增加。

值得注意的是,自180 ka开始,哈尔滨黄土的大于63 μm与EM3的粒径组分含量呈下降趋势,表明松嫩沙地干旱化加剧事件直至180 ka才有所缓和。这种缓和的趋势在Sr同位素(图10e)和TOC指标(图10f)中也有所体现。哈尔滨黄土的Sr同位素和Rb/Sr比值(图5h),均同平均粒径呈弱相关性(图9a,b,相关系数R2分别为0.45和0.44),表明粒度对二者的影响可以忽略不计,故Rb/Sr比值反映了东亚夏季风的强度变化[14,44,71]。自180 ka以来,哈尔滨黄土的Sr同位素值自180 ka开始,整体高于平均值,表现出相对高值的特征,且Rb/Sr比值也呈增加的态势,表明此时期该区夏季风增强。TOC含量主要受控于环境因素[72],可以极好地指示气候的暖湿程度。180 ka以来哈尔滨黄土TOC含量表现出缓慢上升的趋势,且在120 ka时急剧增加,同样佐证了松嫩平原的气候逐渐改善,干旱化程度趋于转好。

图10 荒山剖面与其他地区环境变化记录对比(a)HS剖面>63 μm组分;(b)HS剖面EM3组分;(c)NYZG剖面>63 μm组分;(d)矾山剖面>63 μm组分;(e)Sr同位素组成;(f)TOC含量;(g)北大西洋深海氧同位素[31];(h)北太平洋海平面温度[87];(i)北太平洋粉尘通量(V21 ̄146)[88]Fig.10 Comparisons of environmental change records for HS profile and other regions

综上所述,松嫩平原地区自460 ka以来开始呈现出干旱化趋势,并导致该区域环境发生重大变化,主要表现在以下两个方面:其一是松嫩平原干旱化以及松嫩沙地和哈尔滨黄土堆积的开始;其二是松嫩沙地在300 ka(L3黄土层)和380 ka(L4黄土层)发生两次干旱化加剧和沙地扩张现象。在180 ka之后,松嫩平原干旱化现象呈现缓和的趋势,气候逐渐趋于暖湿。

4.4 干旱化驱动机制

对亚洲内陆干旱化的驱动机制研究涉及很多方面[73-76],一般认为主要受青藏高原的隆升、新特提斯海退出以及新生代全球气候变冷与海平面下降等区域和全球要素的共同作用[73]。对于亚洲中纬度地区而言,青藏高原的隆升阻挡来自印度洋的水汽,明显地影响了大气环流分布格局。此外,高原的隆升也有利于山脉的剥蚀,为亚洲地区提供粉尘物质[77-78],是内陆常年干旱化的主导因素。晚新生代以来,青藏高原的快速隆升分为三大阶段,分别为3.6~1.7 Ma的青藏运动[79],1.1~0.6 Ma昆仑—黄河运动[79]以及0.15 Ma以来的共和运动[79-81]。但昆仑—黄河运动时期青藏高原就已隆升到一定高度[81];此外新特提斯海在晚始新世(约34 Ma)就已经全面退出亚洲内陆[74,76]。所以青藏高原的隆升、新特提斯海的退出并非是导致松嫩平原干旱化的主导因素。

受中更新世气候转型(MTP)影响[82-86],第四纪中更新世以后两极冰盖扩张,全球冰量增加,气温降低,冬季风加强导致北太平洋风积尘的质量堆积率呈上升趋势,全球气候主导周期由41 ka转为100 ka。EM3作为对东亚冬季风较为敏感的粒度组分,其在深度上的变化可以反演搬运动力的强弱变化过程,亦可以指示东亚冬季风在各历史时期中的气候强弱变化特征。对EM3进行时间尺度的小波分析(图11)发现,自460 ka以来,东亚冬季风的波动主周期为96 ka,次周期为37 ka,51 ka,这反映其中96 ka的偏心率是影响东亚冬季风主导周期的主要周期,主要受控于全球冰量的增加[86]。

图11 哈尔滨黄土EM3含量在时间尺度上的小波分析Fig.11 Wavelet analysis of EM3 content of Harbin loess on time scale

风力搬运黄土物质的强度大小主要反映在黄土的粒度变化,尤其是大于63 μm的粒径组分可以较好的表示东亚冬季风的强弱变化[86]。哈尔滨黄土大于63 μm和EM3粒径组分与深海氧同位素组成的对比发现(图10g),300 ka与380 ka对应全球冰量增加与海平面温度下降的阶段(图10h)[31,87]。此外,北太平洋风积尘的质量累积率在该时期呈现上升的趋势(图10i)[88]。所以受海平面温度的下降、全球冰量的增加尤其是北半球冰量增加的影响,所导致的西伯利亚高压不断增强并向南迁移可能是松嫩沙地干旱化加剧的主要气候驱动因素。此外300 ka存在的干旱化加剧事件在赤峰黄土[9]以及矾山黄土[70](图10c,d)中也有所响应,而380 ka的干旱化事件并无明显体现,其原因可能是松嫩平原位于中国北方较高纬度的季风边缘地区,受西伯利亚高压的影响更为显著。

综上所述,全球冰量增加是主导松嫩平原干旱化的主要气候驱动因素,相比于邻区,高纬度的松嫩平原地区对西伯利亚高压具有更好的响应。

黄土堆积是区域构造—地貌—水系演化—气候变化共同作用的结果[89-91]。除东亚冬季风对干旱化的影响外,源区构造运动及水系演化也起到至关重要的作用[92]。如三门峡的贯通导致三门古湖的消亡,随着大面积河床出露于地表最终释放了大量的粉尘物质并最终沉积于相邻下风向地区,形成邙山黄土[92];石楼红黏土的研究表明了吕梁山构造抬升对风尘堆积的影响[93]。因此,构造运动和水系演化对黄土堆积有直接作用。松嫩平原是基于中生代断陷盆地的基础上发育而成[94],在早更新世早期,松嫩平原中部存在巨大的湖盆——松嫩古湖,松辽水系呈向心状注入松嫩古湖[94-96]。至早更新世末期,随着佳依分水岭被切穿,松花江上游被下游所袭夺,松嫩古湖湖水外泄注入三江平原[20-22,97],松嫩古湖面积开始大范围缩减。

第四纪以来受太平洋板块和东北亚板块的相对南北向扭动,长岭断褶式隆起带遭受北西—南东方向的挤压应力而隆起[98]。在此构造背景作用下,中更新世时期,发育于长岭断褶式隆起带上的松辽分水岭逐渐抬升,河流水动力变弱,大量泥沙滞留在分水岭出口处,游荡型河道大量发育,出露于地表的沙滩、天然堤等在强风的作用下形成沙丘,经长期演化形成大面积冲积河谷平原沙地。故中更新世,沿通榆—长岭—怀德一线分布的松辽分水岭隆升,为沙地的形成提供了极好的自然条件,并直接导致松嫩湖盆的向心状水系解体,东、西辽河被迫南流,并被辽河袭夺;嫩江改道东流,注入松花江;第二松花江也改道流入松花江。松嫩古湖失去水源,水位显著下降[99-101]。同时松嫩古湖湖盆也随之抬升,湖水外泄加剧,古湖趋于干涸。加之此时期全球冰量增加,气温大幅度降低,冬季风加强,大量裸露于地表的河—湖床被风蚀,经风蚀后的碎屑物质随强风搬运至下风向,形成黄土堆积。所以哈尔滨黄土堆积与松辽分水岭的构造抬升以及松嫩平原水系演化存在密切联系。

在松辽分水岭构造抬升与气候变冷的共同驱动下,大量干枯的河床和湖床大面积出露,冬季风携带大量粉尘物质并输送至下风向地区,逐渐形成哈尔滨黄土。松嫩古湖中心乾安钻孔岩心的年代地层研究指示了松嫩古湖消亡时间为450 ka[19],与哈尔滨黄土的底界十分接近,印证了哈尔滨黄土堆积(~460 ka)与松嫩古湖的萎缩和消亡有着密切联系。综上所述,哈尔滨黄土的初始堆积是在全球变冷的气候背景下,受松辽分水岭构造抬升以及松嫩水系调整共同作用的结果,是对全球与区域气候(全球冰量增加)—构造(新构造运动和松辽分水岭隆升)—地貌(松嫩古湖消亡,松辽水系变迁)耦合的响应。

5 结论

本文通过对哈尔滨荒山沉积岩心进行沉积特征分析以及粒度、磁化率、总有机碳、Sr-Nd同位素组成测试,结合粒度端元和小波分析,研究了松嫩平原晚第四纪以来的气候干旱化及其驱动机制,取得如下认识。

(1) 在高纬度寒冷气候和土壤潜育化的沉积环境共同影响下,哈尔滨黄土—古土壤序列沉积学特征(如颜色、厚度)与其他地区有显著差异;土壤潜育化的沉积环境下,沉积后磁性矿物转化为更稳定的弱磁性矿物,是古土壤层磁化率呈现低值的原因。

(2) 哈尔滨黄土分离出的粒度端元EM3代表东亚冬季风影响下以尘暴方式搬运来的近源粗颗粒组分,可以指示松嫩沙地的干旱化程度。

(3) 哈尔滨黄土堆积(~460 ka)指示松嫩平原显著干旱化的开始以及松嫩沙地的形成,在300 ka和380 ka存在两次干旱化加剧和沙地扩张现象,从180 ka开始,气候逐渐趋于温暖湿润。

(4) 通过与中更新世全球气候变化记录、邻区黄土记录、松辽平原的构造运动以及松辽水系第四纪演化历史的对比,结合小波分析,我们认为松嫩沙地的形成和干旱化加剧现象是由气候变化—构造运动—水系演化共同作用的结果。

致谢 Sr⁃Nd同位素组成分析得到中国地质大学(武汉)地质过程与矿产资源国家重点实验室黄俊华研究员的支持,粒度和磁化率测试得到中国科学院地球环境研究所孙有斌研究员的指导,总有机碳测试得到中国地质科学院水文地质环境地质研究所刘林敬研究员的帮助。研究生魏振宇和李思琪参加了哈尔滨黄土野外取样和实验室样品的前处理工作,在此一并表示感谢。

猜你喜欢

磁化率沙地同位素
电场背景下手征相变的临界线
定量磁化率成像在孤独症儿童脑铁含量的应用研究
能钻过柔软沙地的蛇形机器人
呼伦贝尔沙地实现良性逆转
沙地迷宫
风滚草
《同位素》变更为双月刊暨创刊30周年征文通知
地震孕育过程中地下磁化率结构的变化分析
基于超拉普拉斯分布的磁化率重建算法
《同位素》(季刊)2015年征订通知