基于正序电压差的含分布式电源配电网断线接地复合故障定位方法
2023-01-12陈纪宇欧阳金鑫刘志宏赵俊光
黄 飞,陈纪宇,欧阳金鑫,戴 健,肖 扬,刘志宏,赵俊光,向 洪
基于正序电压差的含分布式电源配电网断线接地复合故障定位方法
黄 飞1,陈纪宇2,欧阳金鑫2,戴 健1,肖 扬2,刘志宏3,赵俊光3,向 洪1
(1.国网重庆市电力公司电力科学研究院,重庆 401123;2.输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆 400044;3.国网重庆市电力公司,重庆 400015)
分布式电源(distributed generation, DG)大量应用给电网故障识别与定位提出了更高要求。配电网断线故障时绝缘虽未遭到破坏,但可能导致DG故障穿越,甚至诱发并网逆变器闭锁,造成电气量越限,威胁电网稳定运行。为此,提出了一种利用正序电压差实现含DG配电网的断线接地复合故障定位方法。通过解析不同故障情况下配电网馈线序电流和DG并网点电压,发现了非故障点两端正序电压差等于线路压降,而断口两端正序电压差恒为正数且多大于非故障区段压差的特征,构造了基于正序电压差的故障定位判据。针对定位判据可能出现的死区问题,引入DG输出电流作为辅助判据提高定位可靠性,进而提出了含DG配电网的断线接地复合故障定位方法。理论分析和仿真结果表明,所提方法能够实现不同DG容量、故障位置下的断线接地复合故障区段准确定位,且具有较强的耐过渡电阻能力。
DG;配电网;断线接地复合故障;正序电压;故障定位
0 引言
随着能源转型和绿色创新发展的不断深入,可再生新能源尤其是太阳能、风能等受到广泛关注,构建以新能源为主体的新型电力系统势在必行[1-5]。新能源以分布式电源(distributed generation, DG)形式接入,作为“大机组、大容量”电网的补充,能够有效提升新能源应用效率以及配电网运行的可靠性和灵活性。然而,DG接入辐射状配电网后,配电网潮流双向流动,故障电气量的分布和演变特征与传统配电网存在区别。加之受到控制策略、运行方式甚至气候等因素影响,不同运行状态下DG提供的故障电流差异巨大,给含DG配电网的故障定位带来极大挑战[6-9]。
目前不少研究人员就含DG配电网接地故障的定位展开了研究。现有含DG配电网接地故障定位方法主要包括稳态量法、暂态量法和人工智能算法[10-12]。文献[13-15]基于DG故障穿越过程中存在短路电流幅值受限、相角受控、频率偏移的特点,通过比较流过馈线终端的稳态故障电流差异实现定位。文献[16-17]解析了含DG配电网的故障暂态特征,从多角度构造基于暂态零序电流形态学、极性与分布、主谐振频率与能量等定位判据。此外,近年来借助智能算法提取全局信息的方法因具有良好的容错性也受到研究人员的青睐,文献[18-19]分别利用了纵横交叉优化神经网络和多目标粒子群算法求解可能故障空间进而实现定位。
与接地故障相比,断线故障发生时相与地之间的绝缘虽未遭到破坏,但使得配电网三相严重不对称,严重影响电能质量,甚至可能导致DG连锁脱网,乃至系统频率、电压越限[20-22]。由于接地和断线故障特征存在本质差异[23-25],已有接地故障定位方法难以应用于断线故障,开展含DG配电网断线故障识别与定位的研究变得尤为重要。文献[26]提出基于节点功率方向一致性的断线故障区段定位方法。文献[27-29]通过解析非全相断线下馈线序电流变化特征,提出基于序电流和中性点电压组合的断线保护方法。文献[30]提出一种基于电压故障分量推算值与实测电压故障分量比的电压型纵联保护方案,可兼顾断线故障定位。但是,上述研究仅关注于断口两侧均不接地的断线故障。
由于外力、老化等因素,发生断线故障后,常常出现断口一侧接地、另一侧不接地的断线接地复合故障。据统计,南方部分地区断线接地复合故障占比高达25%以上,且接地点附近可能产生大量热量和跨步电压,造成火灾或人员伤亡事故[31]。断线接地复合故障的等效回路并非断线不接地故障和接地故障的叠加。与接地故障相比,断口两侧相对解耦,断口前后馈线电气量的变化规律存在显著差异;与断线不接地故障相比,由于对地支路的存在,接地侧与大地存在电气联系,故障特性也存在明显不同。接地故障和断线不接地故障的识别与定位方法均难以适用于断线接地复合故障。断线接地复合故障可能出现电源侧接地或负荷侧接地,两种情况下故障电流的通路不同,使得故障特性存在较大差异,给故障的识别与定位提出了更大挑战。目前,配电网断线接地复合故障定位的研究还较少,文献[32]提出了一种基于序电流融合的配电网断线接地复合故障识别方法,但未考虑DG接入的影响。
本文提出了一种利用正序电压差实现含DG配电网断线接地复合故障定位的方法。首先,分别建立了DG并网点上游、DG并网点间、DG并网点下游发生断线电源侧接地故障的复合序网和断线负荷侧接地故障的复合序网,推导了不同故障情况下馈线序电流和DG并网点电压的表达式;然后通过分析断口两端的正序电压分布特征,构造了基于正序电压差的故障定位判据,针对定位判据可能出现的死区问题,引入DG输出电流作为辅助判据提高定位可靠性,提出了含DG配电网断线接地复合故障定位方法;最后通过仿真验证了方法的有效性。该方法能够准确实现不同DG容量、负荷大小和故障位置下的断线接地复合故障区段定位,且不受断线接地点过渡电阻的影响,具有较高的可靠性和实用性。
1 配电网断线接地复合故障分析
1.1 DG并网点上游馈线故障
图1 含DG配电网
Fig. 1 Distribution network with DG
由于负荷侧断线点处故障相电流为0,断口前后非故障相电压连续,则负荷侧断线点的边界条件为
考虑到负荷阻抗显著大于系统阻抗,负荷正、负序阻抗相等,求解复合序网可得DG并网点上游断线电源侧接地故障时馈线各序电流为
图2 DG并网点上游馈线断线接地复合故障序网
根据复合序网和式(1)可求得DG1、DG2并网点的正序电压为
当DG并网点上游发生断线负荷侧接地故障时,同样根据边界条件可建立如图2(b)所示的复合序网。求解复合序网可得DG并网点上游断线负荷侧接地故障时馈线各序电流和DG1、DG2并网点正序电压为
1.2 DG并网点间馈线故障
当DG并网点之间馈线(f2处)发生断线电源侧接地故障时,根据式(1)和式(2)可建立如图3(a)所示的复合序网。求解复合序网,可得DG间断线电源侧接地故障时馈线各序电流为
DG1、DG2的并网点正序电压为
当DG并网点间发生断线负荷侧接地故障时,可建立如图3(b)所示的复合序网,求解可得DG并网点间馈线断线负荷侧接地故障时馈线各序电流为
DG1、DG2并网点的正序电压为
(14)
1.3 DG并网点下游馈线故障
当DG并网点下游馈线(f3处)发生断线电源侧接地故障时,可建立如图4(a)所示的复合序网,求解可得DG并网点下游馈线断线电源侧接地故障时馈线各序电流为
当DG并网点下游馈线发生断线负荷侧接地故障时,可建立如图4(b)所示的复合序网,求解可得DG并网点下游馈线断线负荷侧接地故障时馈线各序电流为
根据图4所示复合序网可见,DG并网点下游馈线发生断线接地复合故障后,不论接地点在电源侧还是负荷侧,DG1、DG2并网点正序电压都始终等于母线正序电压。
2 配电网断线接地复合故障特征
当DG并网点上游或DG并网点间馈线发生断线电源侧接地故障时,故障点两端正序电压差为
图4 DG并网点下游馈线断线接地复合故障序网
将式(5)代入式(17)后取绝对值可得
图5 故障正序电压差分布规律
Fig. 5 Distribution of fault positive sequence voltage difference
同理,当DG并网点上游或DG并网点间馈线发生断线负荷侧接地故障时,故障点两端正序电压差为
当DG并网点下游馈线发生断线电源侧接地故障时,故障点两端正序电压差为
当DG并网点下游馈线发生断线负荷侧接地故障时,故障点两端正序电压差为
3 断线接地复合故障定位方法
3.1 故障定位判据
当DG并网点上游馈线发生断线电源侧接地故障时,根据式(3)可知流过故障馈线出口位置的正序电流为
对比式(23)—式(28)可知,故障馈线出口的正序电流总是满足:
因此,当含DG配电网发生断线接地复合故障且正序电压差小于整定值时,故障点下游DG电流之和总是满足式(32)。
故可利用DG输出电流构造如式(33)所示的辅助判据。
3.2 故障定位算法
短路故障时,区段正序电压差可能满足对应的最大线路阻抗压降的判据。由于发生短路故障时,设备可能因过热或产生巨大机械应力损毁,应尽可能快地隔离短路故障,因此断线接地复合故障保护可在短路故障保护的基础上增加一级延时。当配电网发生短路故障时,短路故障定位和断线接地复合故障定位可能同时启动,此时短路故障定位首先动作,断线接地复合故障定位随之返回。当发生断线电源侧接地故障时,由于此时故障特征与接地短路故障时相近,短路故障定位和断线接地复合故障定位仍可能同时启动,短路故障定位首先动作,若短路故障定位不动作,一定延时后断线接地复合故障定位动作。当发生断线负荷侧接地故障时,此时故障特征信息微弱,短路故障定位无法动作,一定延时后由断线接地复合故障定位动作。
图6 基于正序电压差的断线接地复合故障定位流程
4 仿真分析
图7 仿真系统
表1 负荷及DG参数
4.1 不同故障位置
表2 不同故障位置下断线电源侧接地正序电压及DG电流
表3 不同故障位置下断线负荷侧接地正序电压及DG电流
表4 不同故障位置下断线电源侧接地正序电压差及整定值
表5 不同故障位置下断线负荷侧接地正序电压差及整定值
4.2 不同过渡电阻
设故障点位于馈线1的3 km处,改变接地点的过渡电阻分别为0 Ω、100 Ω、300 Ω、500 Ω,记录断线电源侧接地故障和断线负荷侧接地故障下各监测点的正序电压和DG输出电流,如表6和表7所示。根据表6和表7及整定原则,分别计算得不同过渡电阻下断线电源侧接地故障和断线负荷侧接地故障时的正序电压差监测值及整定值,如表8和表9所示。
表6 不同过渡电阻下断线电源侧接地正序电压及DG电流
表7 不同过渡电阻下断线负荷侧接地正序电压及DG电流
表8 不同过渡电阻下断线电源侧接地正序电压差及整定值
表9 不同过渡电阻下断线负荷侧接地正序电压差及整定值
4.3 不同分布式电源容量
设故障点位于馈线1的1 km处,改变接于馈线1的5 km处的DG2容量分别为0.5 MW、1 MW、2 MW、3 MW、4 MW,断线电源侧接地故障和断线负荷侧接地故障下故障点前后(FTU1至FTU2区段)的正序电压差及DG1—DG3的输出电流,如表10和表11所示。
表10 不同DG容量下断线电源侧接地正序电压差及DG电流
表11 不同DG容量下断线负荷侧正序电压差及DG电流
5 结论
针对含DG配电网断线接地复合故障的新挑战和新特性,综合考虑了中性点接地方式、故障位置等多重因素的影响,分析了含DG配电网断线电源侧接地故障和断线负荷侧接地故障下的馈线正序电压分布特征,基于非故障点两端正序电压差等于线路压降,而断口两端的正序电压差恒为正数且多大于非故障区段压差的特征,构造了基于正序电压差和DG输出电流的故障定位判据,提出了一种基于正序电压差的含DG配电网断线接地复合故障定位方法。在不同接地侧、不同过渡电阻、不同DG容量、不同故障位置的30组算例中,该方法均能够可靠定位断线接地复合故障,且故障区段的正序电压差或DG输出电流的监测值与对应整定值之比均显著大于1,表明故障区段与非故障区段的边界清晰,故障定位方法具有较高的可靠性和实用性。
[1] 周孝信, 陈树勇, 鲁宗相, 等. 能源转型中我国新一代电力系统的技术特征[J]. 中国电机工程学报, 2018, 38(7): 1893-1904.
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang, et al. Technology features of the new generation power system in China[J]. Proceedings of the CSEE, 2018, 38(7): 1893-1904.
[2] ZHANG Chaorui, LI Jiayong, ZHANG Yingjun, et al. Optimal location planning of renewable distributed generation units in distribution networks: an analytical approach[J]. IEEE Transactions on Power Systems, 2018, 33(3): 2742-2753.
[3] 田廓, 董文杰. 构建新型电力系统背景下输电网架加强投资决策模型[J]. 智慧电力, 2021, 49(8): 1-7, 54.
TIAN Kuo, DONG Wenjie. Investment decision-making model of transmission grids under new style power system[J]. Smart Power, 2021, 49(8): 1-7, 54.
[4] 刘依晗, 王宇飞. 新型电力系统中跨域连锁故障的演化机理与主动防御探索[J]. 中国电力, 2022, 55(2): 62-72, 81.
LIU Yihan, WANG Yufei. Exploring the evolution mechanism and active defense of cross-domain cascading failures in new type power system[J]. Electric Power, 2022, 55(2): 62-72, 81.
[5] 唐坚, 苏剑涛, 姚禹歌, 等. 面向新型电力系统的风电调频技术分析[J]. 热力发电, 2022, 51(7): 1-8.
TANG Jian, SU Jiantao, YAO Yuge, et al. Technical analysis of power system frequency regulation by wind power for new power system[J]. Thermal Power Generation, 2022, 51(7): 1-8.
[6] WANG Chongyu, PANG Kaiyuan, SHAHIDEHPOUR M, et al. MILP-based fault diagnosis model in active power distribution networks[J]. IEEE Transactions on Smart Grid, 2021, 12(5): 3847-3857.
[7] 马静, 刘青, 吴佳芳, 等. 高比例变流型电源并网的输电系统三相短路电流计算[J]. 电力系统自动化, 2019, 43(5): 83-91, 113.
MA Jing, LIU Qing, WU Jiafang, et al. Three-phase short-circuit current calculation for power transmission system with high penetration of converter-type sources[J]. Automation of Electric Power Systems, 2019, 43(5): 83-91, 113.
[8] 陈燕擎, 刘涛, 韩文建, 等. 考虑配电网分布式零序电 流关系的单相接地故障定位[J]. 电力系统保护与控 制, 2020, 48(22): 118-126.
CHEN Yanqing, LIU Tao, HAN Wenjian, et al. Single- phase-to-earth fault location in distribution networks considering the distributed relations of the zero-sequence currents[J]. Power System Protection and Control, 2020, 48(22): 118-126.
[9] 徐艳春, 赵彩彩, 孙思涵, 等. 基于改进LMD和能量相对熵的主动配电网故障定位方法[J]. 中国电力, 2021, 54(11): 133-143.
XU Yanchun, ZHAO Caicai, SUN Sihan, et al. Fault location for active distribution network based on improved LMD and energy relative entropy[J]. Electric Power, 2021, 54(11): 133-143.
[10] 薛艳静, 徐岩, 程姝. 基于电流变化的环状直流配电网故障定位方法[J]. 智慧电力, 2021, 49(2): 76-82, 98.
XUE Yanjing, XU Yan, CHENG Shu. Fault location method of ring DC distribution network based current variation[J]. Smart Power, 2021, 49(2): 76-82, 98.
[11] 王晓伟, 张晓, 赵倩宇, 等. 基于暂态零模电流的配电网故障区段定位[J]. 智慧电力, 2021, 49(3): 103-110.
WANG Xiaowei, ZHANG Xiao, ZHAO Qianyu, et al. Fault section location in distribution system based on transient zero-mode current[J]. Smart Power, 2021, 49(3): 103-110.
[12] 姚永峰, 王启哲, 王慧萍, 等. 基于邻接矩阵的低压配电网故障区段定位方法[J]. 中国电力, 2021, 54(11): 91-96, 114.
YAO Yongfeng, WANG Qizhe, WANG Huiping, et al. Faulted line segment location method for low-voltage distribution network based on adjacency matrix[J]. Electric Power, 2021, 54(11): 91-96, 114.
[13] 高孟友, 徐丙垠, 张新慧. 基于故障电流幅值比较的有源配电网故障定位方法[J]. 电力自动化设备, 2015, 35(7): 21-25.
GAO Mengyou, XU Bingyin, ZHANG Xinhui. Fault location based on fault current amplitude comparison for active distribution network[J]. Electric Power Automation Equipment, 2015, 35(7): 21-25.
[14] 陈建平, 桑林卫, 吴在军, 等. 基于幅相关系的有源配电网多端差动保护方案[J]. 电测与仪表, 2021, 58(9): 71-77.
CHEN Jianping, SANG Linwei, WU Zaijun, et al. Multi- terminal differential protection scheme for active distribution network based on amplitude-phase relationship[J]. Electrical Measurement & Instrumentation, 2021, 58(9): 71-77.
[15] 段建东, 崔帅帅, 刘吴骥, 等. 基于电流频率差的有源配电网线路保护[J]. 中国电机工程学报, 2016, 36(11): 2927-2934.
DUAN Jiandong, CUI Shuaishuai, LIU Wuji, et al. Line protection based on current frequency difference for active distribution network[J]. Proceedings of the CSEE, 2016, 36(11): 2927-2934.
[16] 李卫国, 许文文, 乔振宇, 等. 基于暂态零序电流凹凸特征的配电网故障区段定位方法[J]. 电力系统保护与控制, 2020, 48(10): 164-173.
LI Weiguo, XU Wenwen, QIAO Zhenyu, et al. Fault section location method for a distribution network based on concave and convex characteristics of transient zero sequence current[J]. Power System Protection and Control, 2020, 48(10): 164-173.
[17] 李卫国, 许文文, 王旭光, 等. 基于广义S变换的有源配电网故障定位方法[J]. 电测与仪表, 2021, 58(6): 105-112.
LI Weiguo, XU Wenwen, WANG Xuguang, et al. Fault location method for active distribution network based on generalized S transform[J]. Electrical Measurement & Instrumentation, 2021, 58(6): 105-112.
[18] 孟安波, 葛佳菲, 李德强, 等. 基于纵横交叉算法的神经网络配电网故障选线研究[J]. 电力系统保护与控制, 2016, 44(21): 90-95.
MENG Anbo, GE Jiafei, LI Deqiang, et al. Research on fault line selection of distribution network using RBF neural network based on crisscross optimization algorithm optimization[J]. Power System Protection and Control, 2016, 44(21): 90-95.
[19] 吴凡, 赵晋泉, 朱斌, 等. 基于MOPSO的含分布式光伏配电网故障区段定位[J]. 电力系统保护与控制, 2018, 46(6): 46-53.
WU Fan, ZHAO Jinquan, ZHU Bin, et al. Faulty section location based on MOPSO for distribution networks with distributed photovoltaic generation[J]. Power System Protection and Control, 2018, 46(6): 46-53.
[20] KALYUZHNY A. Analysis of temporary over voltages during open-phase faults in distribution networks with resonant grounding[J]. IEEE Transactions on Power Delivery, 2015, 30(1): 420-427.
[21] CAMPBELL M, ARCE G. Effect of motor voltage unbalance on motor vibration: test and evaluation[J]. IEEE Transactions on Industry Applications, 2018, 54(1): 905-911.
[22] 丛子涵, 刘亚东, 王鹏, 等. 10 kV配电网断线坠地故障地表电势分布及安全距离研究[J]. 高压电器, 2022, 58(4): 101-107.
CONG Zihan, LIU Yadong, WANG Peng, et al. Study on surface potential distribution and safety distance of disconnected grounding fault in 10 kV distribution network[J]. High Voltage Apparatus, 2022, 58(4): 101-107.
[23] 龙毅, 欧阳金鑫, 熊小伏, 等. 基于零序功率变化量的配电网单相高阻接地保护[J]. 电工技术学报, 2019, 34(17): 3687-3695.
LONG Yi, OUYANG Jinxin, XIONG Xiaofu, et al. Protection principle of single-phase high resistance fault for distribution network based on zero-sequence power variation[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3687-3695.
[24] WANG Xuewen, ZHANG Hengxu, SHI Fang, et al. Location of single phase to ground faults in distribution networks based on synchronous transients energy analysis[J]. IEEE Transactions on Smart Grid, 2020, 11(1): 774-785.
[25] 王鹏, 冯光, 韦延方, 等. 10 kV配电网的接地故障测试述评及真型实验场设计[J]. 电力系统保护与控制, 2020, 48(11): 1-10.
WANG Peng, FENG Guang, WEI Yanfang, et al. Review of grounding fault testing and design of real experimental field for 10 kV distribution network[J]. Power System Protection and Control, 2020, 48(11): 1-10.
[26] 王玥婷, 梁中会, 牟欣玮, 等. 考虑分布式能源的配电网断线定位方法[J]. 电力系统保护与控制, 2018, 46(21): 131-137.
WANG Yueting, LIANG Zhonghui, MU Xinwei, et al. Method of locating disconnection of distribution network considering distributed energy[J]. Power System Protection and Control, 2018, 46(21): 131-137.
[27] 杜雪, 肖扬, 付滨, 等. 基于负序电流比的主动配电网断线故障保护方法[J]. 电测与仪表, 2021, 58(7): 57-66.
DU Xue, XIAO Yang, FU Bin, et al. Break fault protection method of active distribution network based on negative-sequence current ratio[J]. Electrical Measurement & Instrumentation, 2021, 58(7): 57-66.
[28] 王开科, 熊小伏, 肖扬, 等. 基于负序电流的主动配电网单相断线故障保护方法[J]. 电力系统保护与控制, 2021, 49(6): 10-18.
WANG Kaike, XIONG Xiaofu, XIAO Yang, et al. Single-phase break fault protection method for an active distribution network based on negative sequence current[J]. Power System Protection and Control, 2021, 49(6): 10-18.
[29] XIAO Yang, OUYANG Jinxin, XIONG Xiaofu, et al. Fault protection method of single-phase break for distribution network considering the influence of neutral grounding modes[J]. Protection and Control of Modern Power Systems, 2020, 5(2): 111-123.
[30] 王志远. 有源配电网馈线保护方法研究[D]. 济南: 山东大学, 2021.
WANG Zhiyuan. Research on feeder protection method of active distribution network[D]. Jinan: Shandong University, 2021.
[31] 谢松伟, 薛永端, 吴卫堃, 等. 单相断线坠地故障暂态特征及暂态选线方法适用性[J]. 电力系统自动化, 2022, 46(2): 126-136.
Xie Songwei, XUE Yongduan, WU Weikun, et al. Transient characteristics of single-phase line breaking and grounding fault and applicability of transient line selection methods[J]. Automation of Electric Power Systems, 2022, 46(2): 126-136.
[32] 肖扬, 欧阳金鑫, 熊小伏. 计及过渡电阻影响的配电网断线接地复合故障保护方法[J]. 电网技术, 2021, 45(11): 4296-4307.
XIAO Yang, OUYANG Jinxin, XIONG Xiaofu. Protection method of compound break fault with grounding for distribution network considering influence of fault resistance[J]. Power System Technology, 2021, 45(11): 4296-4307.
Fault location method of a compound break fault with grounding for distribution network contained distributed generation based on positive sequence voltage difference
HUANG Fei1, CHEN Jiyu2, OUYANG Jinxin2, DAI Jian1, XIAO Yang2, LIU Zhihong3, ZHAO Junguang3, XIANG Hong1
(1. State Grid Chongqing Electric Power Research Institute, Chongqing 401123, China; 2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology (Chongqing University), Chongqing 400044, China;3. State Grid Chongqing Electric Power Company, Chongqing 400015, China)
The massive application of distributed generation (DG) has brought forward higher requirements for grid fault identification and location. Although the insulation is not damaged during a break fault in the distribution network, it may lead to DG fault ride-through and even induce grid-connected inverter blocking, causing an electrical quantity exceeding the limit, and thereby threatening the stable operation of the power grid. Thus a method is proposed to locate the compound break fault with grounding in a distribution network with DG using the positive sequence voltage difference. By analyzing the sequence currents and voltages point of common coupling voltages of the distribution network under different fault conditions, it is found that the positive sequence voltage difference at both ends of the non-fault section is equal to the line voltage drop, while the positive sequence voltage difference at both ends of the break is constant positive and more than the difference of the non-fault section. Thus a fault location criterion based on the positive sequence voltage difference is constructed. For the possible dead zone problem of the location criterion, the DG output current is introduced as an auxiliary criterion to improve reliability. Finally, the method of fault location of a compound break fault with grounding is proposed. The theoretical analysis and simulation results show that the proposed method can accurately locate the compound break fault with grounding section with different DG capacity and fault location, and has strong resistance to transition resistance.
distributed generation (DG);distribution network; compound break fault with grounding; positive sequence voltage; fault location
10.19783/j.cnki.pspc.220355
国家自然科学基金项目资助(51877018);国网重庆市电力有限公司科技项目资助(SGCQDK00DWJS2100189)
This work is supported by theNational Natural Science Foundation of China (No. 51877018).
2022-03-17;
2022-07-22
黄 飞(1987—),男,硕士研究生,高级工程师,研究方向为智能配电网技术;E-mail: huangfei_87@163.com
陈纪宇(1999—),男,硕士研究生,研究方向为电力系统保护与控制;E-mail: chenjiyve@163.com
欧阳金鑫(1984—),男,博士,副教授,研究方向为电力系统保护与控制、新能源发电等。E-mail: jinxinoy@ 163.com
(编辑 周金梅)