APP下载

植物氮素利用途径中硝酸盐转运基因的研究进展

2022-11-19刘文平梁烜赫张春宵李淑芳曹铁华李晓辉

中国土壤与肥料 2022年7期
关键词:突变体拟南芥氮素

刘文平,梁烜赫,张春宵,李淑芳,曹铁华*,李晓辉*

(1.吉林省农业科学院玉米研究所,吉林 公主岭 136100;2.吉林省农业科学院农业资源与环境研究所,吉林 长春 130033;3.吉林省农业科学院作物资源研究所,吉林 公主岭 136100)

氮素是植物生长发育必需的大量元素之一,是氨基酸、核酸和叶绿素等不可缺少的组成成分。土壤中的氮含量会严重影响植物的生长发育,氮含量低时,植株的根不断伸长,侧根数量增多,生长变慢、分枝和分蘖都变少[1-2]。土壤中的氮素会被细菌硝化成硝酸盐,所以土壤中通常存在大量的硝酸盐,是植物获取氮素的主要来源。由于植物不能像动物一样自由移动,为了适应不同的氮素环境条件,进化出了复杂巧妙的调控机制去适应时刻变化的外界环境。植物从土壤中吸收硝酸盐是一个复杂的生物过程,包括硝酸盐吸收、转运和同化等[3-4]。经过长期的进化过程,硝酸盐转运基因是一个多基因的基因家族,这些基因在植株不同部位特异表达,基因功能也各不相同,并且存在一因多效的基因。在整个生物过程中,需要不同的硝酸盐转运基因在植株的不同部位各司其职并共同调控作用才能完成。植物通过根系细胞膜上的硝酸盐转运蛋白吸收硝酸盐,然后从根部细胞向地上部转运,经过木质部和韧皮部的装载及卸载,最后转运到叶片细胞,被同化或者被储存在液泡中[5-6]。

提高作物的产量主要是通过增施氮肥,但是大量施用氮肥不仅会造成能源的浪费和生产成本的增加,还会加剧土壤酸化和水体的富营养化。为了提高氮肥利用效率,阐明植物如何从土壤中获取氮素的分子机理是植物营养与肥料学科的研究热点之一。近年来,前人从植物的根、茎、叶等部位和从细胞水平到分子水平对植物氮素吸收利用进行了深入研究,全面阐述植物是如何从外界环境中吸收氮素,转运到植株的不同部位,并进行同化利用[7]。本文综述了植物硝酸盐转运基因的研究进展,以期利用基因编辑技术对NRT关键基因进行编辑,提高NRT蛋白对硝酸盐的吸收、转运和再分配的效率,提高植株对氮素的利用效率,培育氮高效利用的作物品种,以减少氮肥的投入,从而实现节能减排的作物可持续生产。

1 硝酸盐转运基因

硝酸盐转运基因在植物中对硝酸盐的吸收利用具有至关重要的作用。硝酸盐转运基因家族成员十分复杂,在功能上也不相同,它们的组织特异表达部位各不相同[1,8]。已被鉴定的硝酸盐转运基因成员主要分为4大类:NRT1(Nitrate transporter1/peptide family)、NRT2、CLC(Chloride channel)和SLAC/SLAH(Slow anion channel-associated homologues)[9]。为了高效地从土壤中吸收硝酸盐,植物进化出不同功能的NRT基因,这些基因的功能从控制根系发育、地下部向地上部转运硝酸盐,到氮素的储存和再分配等,从而形成了复杂的氮素吸收信号通路。在环境中硝酸盐浓度低时,植物从外界环境中吸收硝酸盐主要是硝酸盐高亲和转运系统在发挥作用;反之,在环境中的硝酸盐浓度高时,植物从外界环境中吸收硝酸盐的系统是低亲和转运系统,在已鉴定NRT1基因成员中主要包括NRT1.1和NRT1.2基因;NRT1.1基因是个例外,它是硝酸盐双亲和基因[10-11]。这些不同的NRT基因在氮吸收信号通路中发挥不同的作用,并且也影响植物的性状。

1.1 硝酸盐转运基因在硝酸盐吸收中的作用

氮素来源于土壤,在整个生育期植物如何从土壤环境中吸取氮源是至关重要的第一步。植物硝酸盐吸收转运信号通路中,被鉴定的第一个硝酸盐双亲和基因是NRT1.1(CHL1/NPR6.3),它是植物根系细胞中硝酸盐的受体,能开关硝酸盐信号途径中其他基因的表达[12]。在氮素充足的条件下,与对照植株相比,拟南芥nrt1.1突变体的硝酸盐含量下降了45%[13];在0.2 mmol/L硝酸盐条件下,拟南芥nrt2.1/2.2双突变体植株的硝酸盐吸收率下降了50%;而nrt1.1/2.1/2.2三突变体植株则比双突变体植株的硝酸盐吸收率下降更多,达到38%,并且三突植株比二突植株生长迟缓。实验结果表明,NRT1.1是植株在低氮素生长条件下吸收硝酸盐必不可少的转运蛋白[12]。NRT1.1在硝酸盐低亲和与高亲和模式的转换依赖于外界环境中硝酸盐的浓度,在蛋白的第101位点苏氨酸磷酸化和去磷酸化影响着该蛋白的功能。磷酸化会改变NRT1.1的二聚化以及构象,这个位点是开闭AtNRT1.1蛋白硝酸盐高亲和与低亲和模式转换的关键氨基酸。在外界环境氮素充足的条件下,这个位点不被磷酸化,采取硝酸盐低亲和模式吸收硝酸盐;当外界的硝酸盐浓度变低时,AtNRT1.1蛋白该位点的苏氨酸被磷酸化,采用硝酸盐高亲和模式吸收硝酸盐[14-15]。

拟南芥NRT1.1既是硝酸盐的转运蛋白,也是侧根中生长素的转运蛋白;NRT1.1通过调控根系的生长素分布,从而控制侧根的形成和生长[16-17]。在低氮素条件下,拟南芥nrt1.1突变体植株在侧根积累了大量生长素;NRT1.1朝远离侧根顶端方向转运生长素,导致侧根顶端的生长素含量变低,侧根的生长受到抑制[18-20]。拟南芥NRT1.2蛋白是硝酸盐低亲和转运蛋白,它的表达与NRT1.1基因不同,是组成型表达,但也是在根系中表达。在氮素充足的培养条件下,与对照相比,nrt1.2突变体植株的硝酸盐含量下降[21-23]。在水稻和玉米中,与拟南芥NRT1.1为同源基因,功能与拟南芥相似,都具有吸收硝酸盐的功能。水稻OsNRT1.1B是硝酸盐低亲和转运蛋白,也在水稻的根系表达,控制植株从土壤中吸收硝酸盐[1,24-25]。OsNRT1.1B蛋白还能转运硒元素,把硒元素从地下部向地上部运输,OsNRT1.1B基因过表达的水稻植株谷粒硒元素含量比对照高1.83倍[26]。玉米中与拟南芥AtNRT1.1蛋白序列相似度达到67%的2个基因分别是ZmNRT6.4和ZmNRT6.6,只有ZmNRT6.6基因的表达响应硝酸盐。ZmNPF6.6也是一个硝酸盐双亲和转运蛋白,ZmNPF6.6蛋白的第104位点苏氨酸的改变,影响ZmNPF6.6的硝酸盐转运活性,这个位点对应拟南芥NRT1.1的第101位点;而第362位点的组氨酸改变,会导致ZmNPF6.6基因失去吸收硝酸盐的功能。在低氮水培条件下,ZmNPF6.6蛋白在氮吸收高效玉米杂交种中的表达量比氮吸收低效杂交种高,而且在处理48 h后,氮吸收高效玉米吸收的硝酸盐含量超过了氮吸收低效玉米含量的50%~60%。ZmNPF6.6基因是否是玉米中感知硝酸盐的受体目前尚未确定,是否如同拟南芥AtNRT1.1基因一样调控侧根的生长和其他NRTs基因的表达也尚未报道[27-29]。

NRT2基因成员的表达受到硝酸盐的诱导,该家族成员中主要有NRT2.1、NRT2.2、NRT2.4和NRT2.5基因,在根系的硝酸盐吸收中发挥作用[19,30-31]。在 低 氮 条 件 下,主 要 是NRT2.1和NRT2.2蛋白在硝酸盐吸收中起重要的作用,它们的表达量会迅速增加;NRT2.4和NRT2.5蛋白则是在植物处于缺氮的条件下发挥功能,NRT2.4是在植株氮素极低时才发挥功能;NRT2.5是在植株处于长时间氮素缺乏时,其表达量才开始上升,成为氮高效吸收的主要基因[9,32-33]。通过细胞定位和免疫印迹发现,拟南芥NRT2.1基因在根的细胞壁表达[34]。与对照相比,拟南芥nrt2.1的突变体植株硝酸盐吸收效率降低了75%,突变体的侧根长度反而比对照长;在长期低氮条件下,突变体植株生长严重受到影响。NRT2.1蛋白既在低氮环境中吸收硝酸盐,又协调了根系的发育[33,35-36]。拟南芥NRT2.2基因的表达也是受到硝酸盐的诱导,但是表达量不高,主要在植物的根系部位表达;nrt2.2突变体植株的硝酸盐含量也是比对照低,影响植物从外界环境中吸收硝酸盐[37-38]。拟南芥AtNRT2.4基因的蛋白序列与NRT2.1和NRT2.2的蛋白序列具有很高的同源性。在缺氮条件下,AtNRT2.4基因在NRT2成员中的表达量是最高的;但是氮充足条件下,会抑制它的表达[39]。在长时间缺氮条件下,拟南芥AtNRT2.5基因的表达量迅速增加,它的表达量比NRT2.1和NRT2.2基因高。在nrt2.1突变体植株中过表达NRT2.5基因,过表达植株的硝酸盐吸收量比对照显著提高。在nrt2.5突变体植株中,硝酸盐含量明显比对照低,只达到对照的63%[40-41]。NRT2.5基因在不同的植物中表达部位略有不同。在拟南芥、玉米和小麦中都在根和叶中表达,在拟南芥和小麦的种子中也有表达,在玉米雌穗、穗轴和苞叶中也有表达。玉米ZmNRT2.5基因的表达量也受到低氮的诱导,主要是在植株的营养生长时期表达,在生殖生长时期的根中反而不表达,但是在苞叶中高表达,苞叶对籽粒灌浆期的氮素分布发挥着关键作用[32]。

目前,对NRT2基因的蛋白修饰研究报道不是很多。通过对NRT2.1的磷酸化研究发现,NRT2.1存在3个磷酸化位点,其中一个位点在其N端第28个丝氨酸,植株在低氮条件下该位点被磷酸化;反之,在补充了氮的培养条件下,该位点迅速去磷酸化,可能是通过该位点的去磷酸化调控NRT2.1在低氮和高氮条件下硝酸盐的吸收活性。然而,第501位点苏氨酸的磷酸化,只是影响了NRT2.1硝酸盐的转运活性[33,42-43]。通过爪蟾卵母细胞和酵母互补实验发现,NRT2.1和NAR2.1蛋白互作后,才能够形成吸收硝酸盐的转运系统。拟南芥NRT2.1基因的表达量在nar2.1突变体中仍然很高,但是在细胞膜上看不见NRT2.1;NAR2.1与NRT2.1互作激活了NRT2.1的功能,NAR2.1蛋白对于NRT2.1蛋白的稳定具有极其重要的作用[42,44-47]。然而,在其他植物中也会有例外。水稻的OsNRT2.3b和OsNRT2.4蛋白不用与OsNAR2.1互作就能发挥吸收氮素的功能。OsNRT2.3b基因主要在韧皮部表达,它的功能是通过对pH值的变化来感知,从而开关硝酸盐的转运活性;其在水稻中过表达,能提高植株的pH缓冲能力和增加氮、铁和磷的吸收,提高了植株40%的氮素利用效率[48-49]。

玉米ZmNRT2.1和ZmNRT2.2基因的蛋白序列相似性达到98%,它们在根中的表达受到硝酸盐的诱导;ZmNRT2.1基因在根中特异表达,ZmNRT2.2基因则在皮层和侧根的原基表达[50-51]。通过爪蟾细胞实验表明,ZmNRT2.1蛋白是硝酸盐高亲和转运蛋白,它的功能是从外界环境吸收硝酸盐,ZmNRT2.1也是需要和NAR2.1互作才能发挥作用[52-54]。玉米ZmNRT2.1基因在烟草中过表达,在高氮素条件下,转基因烟草比对照的根系生长旺盛,而且生物量也比对照高,但转基因烟草与对照植株的硝酸盐含量没有明显的差异[55]。水稻OsNRT2.1基因在水稻中过表达能增强植株的根长,硝酸盐含量比对照植株高24.3%[55-56]。

植物既有对硝酸盐的吸收,也存在对硝酸盐外排的现象,但是外排的生理机制尚不清楚[19]。在没有外界胁迫压力下,植物硝酸盐外排量远远小于吸收量。在胁迫条件下,拟南芥NAXT1蛋白可能是通过对硝酸盐的外排,从而能够调控细胞的渗透压[57]。植株生长在氮素充足的土壤中,根系会很发达,侧根数量很多。植株在氮素含量变低的情况下,根系会迅速往土壤深层生长,促进根的伸长去吸收深层土壤中的氮素。土壤环境中的氮素量对植物根系的生长存在调节,适量的氮素可刺激植株侧根的生长。硝酸盐转运蛋白的信号通路与控制根系的发育是如何相互交叉在一起的,还需要进一步的研究[18,58-59]。

1.2 硝酸盐转运基因在硝酸盐运输中的作用

植物从土壤环境中获取到氮源,需要把氮源运输到特定组织,这离不开对硝酸盐的运输。因此,植物对氮素的运输是制约氮素利用效率提高的重要环节之一。植株从外界环境吸收的硝酸盐需要从根部运输到植株的不同部位,维管束组织在植株地上部和地下部的物质运输中具有举足轻重的地位[60-61]。NRT1.5基因在根系的中柱鞘细胞表达,它的功能是将硝酸盐从中柱细胞装载入木质部,负责把硝酸盐从地下部向地上部运输。与对照相比,nrt1.5突变体在根系积累的硝酸盐量比对照植株高。在硝酸盐长距离运输途径中,NRT1.5基因不是植物中唯一的硝酸盐运输途径,还存在其他NRT基因或别的基因控制硝酸盐的运输[62-63]。尽管NRT1.5和NRT1.8基因在进化关系上非常近,然而二者在根和茎部位的表达量却恰恰相反,NRT1.5基因在根中的表达量比茎部位高,NRT1.8基因则正好相反,它们在硝酸盐信号途径中的功能也是相反的。NRT1.8基因还可以在木质部的薄壁细胞中特异表达。硝酸盐经过长距离运输后,需要分配到不同的组织部位中进行同化,NRT1.8基因的功能是卸载木质部中的硝酸盐[64]。然而,NRT1.5控制硝酸盐从地下部组织向地上部组织运输,在根系需要大量硝酸盐时,硝酸盐也能把储存在叶片中的硝酸盐向地下部组织运输[11]。NRT1.9基因在植株根的韧皮部伴生细胞中特异表达,负责将硝酸盐装载入韧皮部向下运输。拟南芥nrt1.9突变体植株的地上部积累了大量的硝酸盐,NRT1.9蛋白在硝酸盐从地下部向地上部的运输过程中起到负调控作用,它可能是作为一个安全阀,调控地上部和地下部硝酸盐含量的分配。如果增加植株地上部对硝酸盐的同化能力和叶片对多余硝酸盐储存的能力,能否促使植物从土壤中吸收大量的硝酸盐,特别是在籽粒形成时期,大量储存的氮素被再利用,并通过代谢过程成为籽粒的成分?目前,关于植物根系如何将硝酸盐从地下部向地上部转运的分子调控水平研究报道不多[65]。

与拟南芥AtNRT1.8蛋白同源的水稻OsNPF7.2也是硝酸盐低亲和转运蛋白,它在根的厚壁组织、皮层和叶脉中表达。它的功能可能与拟南芥的基因功能相似,负责硝酸盐的装载和卸载[51,66]。水稻OsNPF2.4是一个在根系部位表达的硝酸盐双亲和转运蛋白,在硝酸盐吸收中起到重要的作用,也控制硝酸盐的长距离转运和再分配;与对照相比,水稻osnrt2.4突变体植株的侧根数量会减少、长度也会变短,硝酸盐吸收量也会减少,表型和功能与拟南芥NRT1.1基因相似[67-68]。水稻OsNRT2.3a是拟南芥AtNRT2.5的同源基因,OsNRT2.3a蛋白需要和OsNAR2.1互作才能调控对硝酸盐的吸收,也控制硝酸盐从地下部向地上部的运输;在水稻中过表达OsNRT2.3a基因,不仅能增强大田中水稻在高氮素或者低氮素条件下对硝酸盐吸收的能力,还能提高水稻的产量和氮素利用效率[32,69]。

1.3 硝酸盐转运基因在硝酸盐储存中的作用

植物在不同生长阶段对氮素的需求量不同,硝酸盐的吸收和同化存在一个动态调节。在长期的进化过程中,植物建立了体内多余硝酸盐的储存机制,存储的硝酸盐则可作为后期大量需求氮素的主要来源之一。植物吸收的硝酸盐在被同化利用后,大约99%剩余的硝酸盐被储存在叶片的液泡中。拟南芥AtNRT1.4基因在叶片的叶柄部位和主脉处特异表达,不受硝酸盐的诱导;在叶柄和叶片主脉处的硝酸盐含量很高,且硝酸盐还原酶活性低。nrt1.4突变体植株的叶柄和叶片主脉处的硝酸盐含量只有对照的45%~50%。NRT1.4基因也影响了叶片的生长,突变体比对照植株的叶片宽;叶片负责硝酸盐储存的基因不止一个,但只有AtNRT1.4基因已被鉴定[70]。可能是因为NRT基因数量太多,同一个基因在不同的部位发挥的作用会有所不同,且同一功能又同时存在多个NRT基因发挥同样的作用,这使控制硝酸盐储存的基因鉴定及其困难。

1.4 硝酸盐转运基因在籽粒中的作用

植物在营养生长阶段体内储存了大量的硝酸盐,这些硝酸盐是植株后期生殖生长需要的氮源。这部分氮素的再利用是提高氮素利用效率和提高产量至关重要的一步。在籽粒形成过程中,特别是小麦和玉米叶片中氮素被再利用占据了籽粒中氮素的50%~90%[71]。拟南芥AtNRT1.7基因在叶片的叶脉韧皮部特异表达,它的功能是负责将老叶片中的硝酸盐装载入韧皮部,并运输到新生叶片中,调控氮素从源到库的再利用。拟南芥AtNRT1.6基因在生殖生长期的长角果中特异表达,在植株授粉后,AtNRT1.6基因的表达量迅速增加,其功能是参与硝酸盐向种子的运输。nrt1.6突变体种子的氮含量也比对照低,突变体也出现胚发育不正常的现象,达到40%,严重影响结实率。在nrt1.6突变体植株种子形成过程中的1~4个细胞发育阶段就会出现发育不正常的胚。NRT2.7基因是在种子形成的后期表达,特别是在种子的成熟后期;NRT2.7基因有助于种子胚的成熟。在nrt2.7突变体植株的胚形成过程中,早期的胚发育正常,只是在后期出现异常。NRT1.6和NRT2.7在种子的形成过程中,在不同的阶段和部位发挥功能,确保种子中氮素的运输和储存。拟南芥nrt2.7的突变体种子的硝酸盐含量比对照低,但是氨基酸和淀粉等物质的含量不受影响。AtNRT2.7基因在后期胚的成熟过程中是否还与硝酸盐的转运有关,尚不清楚[72-74]。

2 硝酸盐转运基因在植物育种中的利用

氮素从根系运输到叶片中储存,在植株后期大量需求氮素时作为主要氮源之一[21]。硝酸盐转运蛋白的特定部位表达模式决定了其在植株体内的功能。AtNRT1.7基因的功能是负责把储存的硝酸盐装载入韧皮部,并转运到新生的叶片中;通过基因克隆等技术选择NRT1.1基因的第2~5个跨膜结构域和NRT1.2基因的N端第1个跨膜结构氨基酸序列及后6个膜结构氨基酸序列组建一个全新的NRT(NC4N)基因,再利用NRT1.7基因的启动子使NC4N基因在特异部位表达;利用转基因技术把NC4N基因分别转入拟南芥、烟草和水稻中,对转基因植株的产量测定发现,NC4N基因提高了拟南芥、烟草和水稻的生物量,收获的种子数量也比对照高。在这3种植株中老叶片的含氮量比对照低,不仅在植株的营养生长时期,而且在生殖生长时期也促进了植株中氮素的再转化。这证实了提高植株氮素从源到库的转运,可以提高植株的氮素利用效率[75]。

在多年的进化和驯化过程中,植物基因出现了自然变异和选择压力的变异,这些位点的变异可以微调这些基因功能,最终表现在这些基因如何参与具体的生物过程[76]。Hu等[24]通过分析籼、粳稻的OsNRT1.1B基因序列多态性,发现两者的氮吸收效率差异是因为OsNRT1.1B基因的一个氨基酸的变异所导致,通过基因编辑技术改变其位点,则能提高粳稻的氮素利用效率。在不影响植株正常生长的前提下,通过对氮素利用途径中多个关键基因的过表达和多个基因组合共表达,有利于提高产量[77]。NRT2需要与NAR2.1互作才能发挥氮素吸收效率,同时在水稻中过表达OsNAR2.1基因和OsNRT2.3a基因,田间测产表明过表达基因植株比对照增加了24.6%的产量;单独过表达OsNAR2.1基因,只增加了14.1%的产量。Liu等[78]研究发现,在少施氮肥条件下,与对照植株相比较,OsTCP19基因能够提高水稻20%~30%的氮肥利用率。然而,随着农业生产中的氮肥施用,OsTCP19基因在大量水稻品种中逐渐消失。OsTCP19蛋白既能抑制DLT基因的表达,也与OsABI4和OsULT1等蛋白互作,参与到ABA、发育信号等多条信号通路;在水稻的氮素利用通路中,也影响了相关的NRT基因的功能发挥。因此,通过研究与NRT互作的关键基因,也可能挖掘到影响农艺性状至关重要的基因。

3 展望

植物对氮素的吸收、转运、储存、同化和再利用是多个基因和环境因子共同作用的结果。硝酸盐被根系吸收、硝酸盐在木质部和韧皮部装载运输和在液泡中储存等整个生物过程中,不同类型的硝酸盐转运蛋白复杂催化结构的差异,导致了吸收硝酸盐能力和功能等方面的差异[79-80]。硝酸盐吸收存在多个调控模块,目前还没有完全解析吸收、转运的信号通路。通过对植物氮素利用途径的研究,了解这些组成部分是如何相互作用并成为一个有机整体而发挥作用,有利于找到制约植物氮素最大化利用的关键点[81]。随着对硝酸盐的运输和再利用等途径中基因的挖掘和功能鉴定,可以利用基因编辑等技术对关键基因进行编辑,通过对关键碱基的替换,改变基因的表达;从而改变改良品种关键基因的功能,提高植株对氮素的运输效率和数量,实现植物氮素利用效率的提高[10]。例如,水稻OsNRT1.1B基因在粳、籼稻间由于单核苷酸的多态性而导致氮素利用效率的不同,因此可以通过基因编辑技术进行单碱基的改变[81]。目前,水稻转基因技术和基因编辑技术已经很成熟,可以通过单碱基的改变,关闭限制氮素吸收、转运、存储及同化利用相关基因的表达,从而改良水稻推广品种的氮吸收效率,达到提高水稻产量的目标。

NRT基因成员中在吸收和转运硝酸盐的效率上存在差异,导致差异的原因是关键结构域氨基酸残基的影响。通过对NRT基因转运结构域的改造,可以提高其转运硝酸盐的效率。对NRT1.7基因的关键结构域位点进行改造,提高了NRT1.7基因对氮素从老叶片向籽粒的转运效率,提高了植株的产量[75]。NRT基因也与其他基因互作,从而参与到其他信号通路中。NRT1.1/NRT2.1基因的表达量提高会抑制植物中光响应调节因子FT和CO基因的表达,从而影响植株的开花时间。利用基因编辑技术在NRT1.1/NRT2.1基因的启动子序列中插入一段序列,提高这两个基因的表达量,从而提高植株对氮素的吸收和改变开花时间[82]。

部分NRT基因的功能已经得到解析,但是其在某些组织中表达的生物学意义尚不清楚。例如:NRT1.1基因在植株的叶柄特异表达,其功能未能解释。还需要通过研究该基因在叶柄处互作的蛋白种类,从而推测其功能。而且对植株中氮素的储存研究尚未深入,除了已知的AtNRT1.4基因控制氮素的储存,其他影响氮素储存的基因还没鉴定出来;需要通过转录组学和代谢组学等组学的结合,集中研究硝酸盐转运蛋白多基因突变体,将有助于鉴定NRT基因在氮素储存中发挥的作用。利用酵母单杂交技术挖掘调控NRT基因表达的上游基因和NRT基因启动子中的关键元件,最终增加NRT基因的表达量,提高植株对氮素的吸收和转运效率。未来的研究可以通过整合信号途径中多个NRT关键基因和调控因子,达到操纵硝酸盐转运体的活性,增强植株对硝酸盐吸收和转运等方面的能力。因此,采用多基因表达的模式,利用过表达根系吸收氮素基因、组织特异表达启动子控制籽粒灌浆时期的NRT基因和其他影响氮素在籽粒积累的基因共同组合成基因簇,提高植物的氮素利用效率[18];再结合植物不同生长时期的氮肥施用量和田间管理,在显著减少氮肥施用量的前提下,确保稳产或增加产量,来减轻氮肥对环境的污染。

猜你喜欢

突变体拟南芥氮素
河北农业大学和中国农业科学院联合发布大白菜突变体库
浅埋滴灌下不同滴灌量对玉米花后碳代谢和光合氮素利用效率的影响
不同施氮量下籼/粳杂交稻甬优2640产量和氮素吸收利用的特点
冀东地区晚播春玉米氮素积累、分配与转运特性
不同氮肥用量对小麦氮素吸收分配及利用效率的影响
黍子矮秆突变体‘87’表型及对赤霉素敏感性分析
水稻黄叶不育系突变体H08S的表型特征与遗传分析
拟南芥
口水暴露了身份
一株特立独行的草