APP下载

有机废物堆肥中的微塑料污染:来源、相互作用及展望

2022-10-03宋英今王雨欣陈冠益李瑞祎李易航张颖秀

中国土壤与肥料 2022年8期
关键词:污泥塑料污染

宋英今,王雨欣,陈冠益,2,李瑞祎,李易航,张颖秀,3*

(1.天津大学环境科学与工程学院,天津 300072;2.天津商业大学机械学院,天津 300134;3.中澳城市环境与可持续发展研究中心,天津 300350)

随着工业产业的发展,塑料作为一种时代产物应运而生。塑料是一种由加聚或缩聚反应聚合而成的高分子化合物。由于其具有成本低、延展性好和经久耐用等特点,已被广泛应用于工业、农业、医药、市政等多个领域。常见塑料种类与用途如表1所示。2015年,全球塑料年产量达到49亿t,预计到2050年,年产量将达到120亿t[1]。然而,塑料的大量使用带来了严重的生态环境问题,大多数塑料在环境中随时间延长破碎成较小的碎片。塑料颗粒的毒性或任何其他影响均可能随着粒径的减小而增加[2-3],环境中不易察觉的微塑料逐渐引起了人们的关注[4-5]。

表1 常见塑料种类与用途

堆肥作为一种绿色、经济的有机废物资源化利用技术,已在固废处理和农业生产中得到广泛应用。堆肥产品富含植物生长所需养分,常被用来改良土壤、提高作物产量。我国是堆肥产品生产和使用大国,年生产量在2500万t以上,施用量在2200万t左右[6]。然而,堆肥产品的质量通常会受到其中杂质污染物(玻璃、金属和塑料颗粒等)的影响。受微塑料污染的堆肥产品作为肥料施入农田会导致土壤中微塑料的积累,为了确保堆肥使用的安全性,避免微塑料带来的二次污染风险,有必要针对堆肥中的微塑料污染展开进一步研究[4,7]。本文旨在总结国内外有关堆肥中微塑料污染水平与来源、堆肥与微塑料相互作用关系的研究成果,针对现阶段堆肥中微塑料研究中存在的问题与空白,提出进一步的研究方向。

1 堆肥中的微塑料污染

微塑料是指粒径小于5 mm的塑料颗粒,除具有粒径小、比表面积大、疏水性强等特点外,微塑料还具有可吸附有机污染物、重金属和微生物等[8-9]的特点。作为一种普遍存在的新兴污染物,其在水生、陆地和大气环境中均有检出。目前关于微塑料的研究中超过96%的研究与海洋环境有关,对陆地生态系统的关注则相对较少[10]。然而陆地生态系统中潜在的微塑料污染比海洋更加突出。有研究指出,每年汇入陆地的塑料量是汇入海洋的4~23倍,其中农田土壤被认为是微塑料的主要污染汇[10-13]。表2列举了不同类型堆肥中微塑料的污染情况。研究表明,塑料农膜的使用和堆肥返田是土壤塑料污染的重要来源[14-15]。到目前为止,多数研究主要聚焦在微塑料对土壤的直接作用上,且与其他来源相比,有关堆肥中微塑料的研究少之又少。

表2 不同类型堆肥中(微)塑料污染情况

研究表明,有机肥的施用是微塑料进入土壤环境的主要路径之一[18]。微塑料并不只是机械地混杂在堆肥产品中,而是随着堆肥的进行,不断与堆体发生相互作用。微塑料影响堆肥的同时,堆肥也对微塑料具有一定降解作用[4,16]。

综上所述,一方面,堆肥技术的合理使用有望在有效处理有机固体废弃物、提供高附加值堆肥产品的同时降解堆肥原料中的微塑料,缓解农业土壤中因有机肥施用而造成的微塑料积累问题;另一方面,微塑料污染日益严峻,如果不及时采取有效的规范化措施,微塑料不止会降低堆肥的品质,更有可能会在堆肥中形成复合污染源进而污染土壤[19-20]。

2 堆肥中微塑料的来源

2.1 堆肥原料中的微塑料

堆肥产品中的微塑料与原料中塑料垃圾的数量和类型密切相关,原料是影响堆肥微塑料浓度的主要原因之一。原料中微塑料的来源可分为两类,一类是用于堆肥的生物质本身含有的微塑料(如污水处理厂污泥[21]、畜禽粪便[22-23]等),这类微塑料由于颗粒微小且与有机废弃物完全混合,很难通过预处理的手段去除[24];另一类微塑料是由预处理过程中未能完全分离的宏观塑料在堆肥过程中不断释放的。

如表3所示,微塑料广泛存在于各种有机废弃物中,污水处理厂的污泥样本中微塑料颗粒浓度普遍较高。我国每年向水环境排放约306.9 t微塑料颗粒,其中80%以上来自污水处理厂排出的废水[25]。Murphy等[26]研究发现,污水处理厂对城市污水中微塑料的去除率可高达98.41%。这也意味着,废水的大部分微塑料滞留在污泥里[27-28]。已有研究表明,污水中90%的微塑料被富集在剩余的污泥中[29]。污水处理厂的污泥大部分用于农业施肥,我国污水处理厂近87%的污泥应用于土壤和自然环境[30]。因此,污泥堆肥返田需要谨慎使用,以免造成微塑料在土壤中的累积,进而威胁动植物和人类健康[31],在畜禽粪便堆肥也存在同样的问题。塑料可通过进食过程进入牲畜动物体内,经动物代谢后混合在粪便中以微塑料的形式排出体外。由于技术限制,目前关于陆地生物体内微塑料负荷的研究非常少,但已有研究表明畜禽粪便中含有微塑料,常年施用粪肥返田是微塑料进入土壤中的重要途径之一[7,18,32]。

表3 有机废弃物中微塑料情况

近年来随着农村经济的发展和生活水平的提高,生活垃圾的产生量也出现较快增长。根据《国家农村环境污染保护规划》(2007~2020)报道,中国农村生活垃圾年产生量约为2.80亿t,并且将继续增加。就其组分而言,塑料类大约占8.78%,且存在地域差异[17,20,36]。用于堆肥的固体废物中伴随着大量的塑料垃圾,这些塑料制品在破碎、机械筛分和翻堆等处理过程中会形成微塑料汇入堆肥中[16,19]。

2.2 堆肥环境中产生的微塑料

农用塑料薄膜的使用是公认的土壤塑料污染主要源头之一[16,20]。农用塑料薄膜应用范围广泛,不光种植耕作时为保温保湿、提高作物产量而使用,实际农田堆肥时也普遍使用。我国北方冬季天气寒冷,堆肥易因温度不达标而出现腐熟不完全,无法达到无害化标准等一系列问题。因此,常采用覆膜发酵的方法,且堆体覆膜有提高堆肥温度、缩短堆肥时间、减少恶臭气体挥发、防止氮素流失、保持肥效等作用[37]。然而,从长远来看,塑料薄膜应用的潜在污染不容忽视。在堆肥过程中,堆体与塑料薄膜接触,石油基塑料成为微生物生长的潜在碳源。堆肥覆膜在长期风化、磨损、光解和生物降解的共同作用下,塑料薄膜会逐渐碎片化并向堆肥中释放微塑料、增塑剂等污染物质[38]。如此,老化的的塑料薄膜成为堆肥环境中微塑料的持续释放源。与此同理,堆肥箱、堆肥袋等常见塑料制堆肥容器的使用也是微塑料进入堆肥的来源之一。

3 微塑料对堆肥的影响

3.1 微塑料对堆肥理化参数的影响

不同种类微塑料对堆肥温度、有机质降解的影响不同。研究表明PHA可提高堆肥温度,刺激微生物活性,对猪粪堆肥中有机质降解有促进作用[39]。这可能是因为PHA具有较强的生物降解性,可为堆肥微生物提供利于转换的额外碳源。更丰富的碳源刺激了堆肥微生物的生长、增强了微生物降解有机质的活性,同时也促进堆肥温度的升高,延长了高温相时间。而PE、PVC等不易降解微塑料的存在对堆肥温度无明显影响,却会抑制堆肥中有机质的降解。其原因可能是PE、PVC干扰了可溶性蛋白质的降解,降低了蛋白质丰度,从而影响堆肥微生物的活性[40]。

不同微塑料对堆肥的pH影响也具有显著差异,这与微塑料在土壤中对pH的影响一致。其可能是由于微塑料的比表面积相对较大,会影响堆肥混合物中的阳离子交换过程[38]。

种子发芽指数(GI)直观反映了堆肥的植物毒性与生物可利用性,是评估堆肥腐熟度的重要指标之一。堆肥腐熟过程中抑制种子发芽的有害物质逐渐被分解,GI值不断升高。一般情况下,GI大于50%则认为堆肥已达到了可接受的腐熟度[41]。微塑料会使堆肥的GI值降低,这是由于微塑料的加入抑制了堆肥的腐熟程度,使得堆肥产品具有一定的植物毒性[42]。若实际农用生产中微塑料掺杂过多,会使堆肥达不到成熟标准,且增加施用堆肥对植物的风险[37,43-45]。

3.2 微塑料对微生物与氮循环的影响

微生物是堆肥反应的主要参与者,微生物的状态对堆肥品质起着关键作用。目前,已有研究发现,微塑料能为微生物提供吸附位点,微生物可以在微塑料表面形成生物膜,微塑料的表面性质会影响微生物组成[4-5,46]。同时,微塑料的存在也会通过影响堆肥系统的微环境条件,改变微生物群落结构,降低微生物的多样性[5,47-48]。

如图1所示,不同种类微塑料对氮循环的影响显著不同。Seeley等[49]研究发现,聚氨酯泡沫和PLA可促进硝化和反硝化作用,而PVC则会抑制这2个过程。Sun等[39]研究发现微塑料可通过影响微生物丰度来抑制硝化作用,与不添加微塑料的堆肥相比,添加0.5% PE、0.5% PVC、0.5% PHA分别会使堆肥中硝态氮(NO3--N)含量下降95.78%、96.62%、68.77%。Zhang等[30]和Judy等[50]认为,微塑料抑制硝化细菌活性,降低了固氮酶、还原酶基因的表达水平。除此之外,堆肥过程中微塑料浸出液中含有的添加剂、增塑剂等也会对硝化作用产生抑制。Wei等[51]发现PVC释放双酚A抑制异养细菌和硝化细菌的活性。

图1 堆肥中微塑料对氮循环的影响

微塑料的存在还可能导致堆肥中铵态氮(NH4+-N)的积累,更易造成氮素的损失。添加PE、PHA后堆肥中NH4+-N含量增多,NH3释放量也分别增加了33.9%和20.9%[39]。以往也有研究表明PE、PS、PVC会阻碍NH4+-N的转化,从而保持或增加NH4+-N的含量[30,50,52]。除微塑料对硝化作用和反硝化作用的影响外,NH4+-N的积累也可能是因为微塑料具有较大的比表面积,其表面可形成生物膜,有利于微生物固定NH4+-N。另外,部分微塑料可被微生物降解,为微生物提供了更多可利用的碳源、使堆肥温度升高。堆体温度的升高会促进本就大量积累的NH4+-N转化为NH3和N2O,增强氮素以气体形式逸散的趋势。

3.3 微塑料在堆肥中产生的二次污染

塑料产品在制造过程中会加入一些有毒的添加剂,以提高其质量和性能,如抗氧化剂、阻燃剂、增塑剂、光稳定剂等,在堆肥腐熟过程中微塑料不断向堆体释放这些有机污染物,增加堆肥产品的施用风险。微塑料表面还可吸附有机污染物,例如多氯联苯、农药、抗生素等[53-54]。除此之外,因其表面含有丰富的羧基、羟基等含氧官能团,可依靠静电作用捕获重金属离子,对重金属污染具有富集作用[55-56]。

微塑料粒径的大小及其与污染物间的相互作用也会影响微塑料结合污染物的能力。随着堆肥进程,微塑料表面逐渐老化粗糙,粒径变小,比表面积增大,吸附位点增加,表面官能团增多,辛醇/水分配系数升高,疏水性增强,能够吸附更多的重金属污染物和有机污染物,从而改变堆肥的理化性质,并且会在堆肥产品中积累形成污染源的汇,易造成二次污染[1,38,57]。因此堆肥中微塑料的存在影响最终堆肥产品的性能,关系着堆肥的实用性。

4 堆肥对微塑料的降解研究与改良方法

4.1 堆肥对微塑料的降解作用

堆肥过程中环境的温度、湿度、主要微生物种类以及塑料的理化性质等因素均对微塑料的降解有很大影响[58]。Mercier等[4]测量了堆肥前后8种聚合物卡片的失重情况来探究堆肥对微塑料的降解作用,其中,变化较为明显的为PHA、PBS、PA,分别失重(7.9±0.7)%、(5.5±0.3)%、(1.1±0.2)%。Zafar等[59]通过家庭生活垃圾堆肥发现,在好氧堆肥的嗜热和早期腐熟阶段,PU降解明显。然而,ei Hayany等[9]探究了污泥与园林修剪产生的绿色废弃物共堆肥对微塑料(PE、PP、PA、涤纶)的降解作用,研究发现共堆肥可通过稀释作用缓解污泥堆肥中微塑料的浓度。传统的共堆肥工艺仅对微塑料颗粒大小的分布有影响而无法降解塑料,随着堆肥的进行小颗粒微塑料(小于300 μm)丰度逐渐增加,大颗粒微塑料逐渐减少,其原因可能是由于常规堆肥中缺乏能利用塑料作为主要能源与碳源的微生物[58]。

4.2 堆肥中微塑料降解的改良方法

4.2.1 超高温堆肥

超高温堆肥是指在不依赖外部加热的条件下,向传统堆肥中添加超嗜热菌剂,利用超嗜热菌分解氧化有机质产生热能,使堆肥温度快速提升至80℃以上,并持续5~7 d,以此达到有机废弃物快速减量化、腐殖化和无害化的堆肥过程。超高温堆肥的温度最高可达90℃以上,与传统堆肥相比提高了20~30℃,同时还能使堆肥周期缩短30%以上,病原体杀灭效果达到99%以上,最终提高有机固体废物堆肥的资源化效率,显著缩小堆肥体积[58]。

针对污泥中微塑料含量高、去除难的问题,Chen等[60]发现超高温堆肥技术能够高效促进污泥中微塑料的降解。在超高温条件下,超嗜热菌能够加速微塑料的生物氧化降解,从而更高效地去除污泥中的微塑料。堆肥后,污泥中的微塑料丰度降低了43.7%,达到了目前微塑料生物降解的最高比例。

4.2.2 生物可降解微塑料

生物可降解塑料是一种很有前景的传统塑料替代品,有助于减少塑料污染。化学合成降解塑料的主要品种为脂肪族聚酯、脂肪-芳香共聚酯和脂肪族聚碳酸酯等[61]。微生物对塑料的降解作用可以分为2个阶段:首先,微生物将聚合物转化为单体、低聚物或二聚物;其次,单体、低聚物或二聚物进入微生物充当碳源和能源,转化为CO2、H2O等[38]。PLA/PHA复合薄膜的宏观降解率可达99%,PBAT膜的宏观降解率为97%[62]。然而,生物可降解塑料的降解过程中并不能完全转化成CO2、H2O等无害物质,而是会向环境中释放添加剂或降解中间体产物,从而以肉眼不易察觉的形式潜藏在环境中[63]。因此,生物可降解微塑料在堆肥中的降解需要进行长期研究,以确保堆肥降解后不会对环境留下潜在危害[64]。

5 结论与展望

近年来,废弃生物质再利用备受推崇,合理利用堆肥技术,既能处理有机废物又能改良土壤。然而随着环境中微塑料污染水平的不断提高,微塑料污染作为一个新兴的全球环境问题,其对堆肥的影响与堆肥返田的潜在风险问题日益显现。目前对堆肥中微塑料的研究相对较少,对微塑料在堆肥、土壤生态系统中的作用途径认识不全面,这些都制约着有机废物堆肥返田的发展[55]。根据目前国内外对堆肥中微塑料污染相关研究发现的问题,不难看出诸多具有挑战性问题亟须解决,主要总结为以下4个方面。

(1)建立统一的微塑料筛分与检测方法。目前,微塑料的鉴定和检测方法没有形成标准体系,对各种微塑料的回收和检测方法研究多样但存在缺陷,且不同的方法得出的研究结果因标准不统一而难以比较。此外,还缺乏对较小尺寸微塑料的识别和检测方法,未来有必要提出回收率高、成本低、省时省力、操作简单的微塑料净化检测方法[65-66]。

(2)关于微塑料对堆肥腐熟过程的影响以及对堆肥产品质量影响的研究还比较少,其机理也不够明确。如果堆肥中微塑料浓度较高且容易释放有毒添加剂,很可能会增加堆肥产品施用到土壤中的风险。因此需要进一步探究微塑料对堆肥养分、腐熟程度、施用风险等方面的影响与作用机理;探究不同种类微塑料与不同原料堆肥相对应的响应关系;研究微塑料对堆肥中微生物的影响;筛选可用于堆肥中降解微塑料的菌株。

(3)随着人们环保意识的逐渐增强与政策的要求,生物可降解塑料越来越多地代替常规塑料。但生物可降解塑料在环境中并不能被完全降解,且降解过程中可能会产生更多不易察觉但危害更强的微塑料或添加剂。因此,亟须探究生物可降解塑料在堆肥中的代谢途径与最终代谢产物,研制可经过堆肥彻底无害化的塑料材料。

(4)微塑料在土壤中长期积累的危害尚不清楚,各国有机肥标准中也未对微塑料做过多的要求,但这并不意味着可以忽视微塑料混杂在肥料中的风险。应进一步探究堆肥中微塑料对农田土壤与作物的影响及危害程度,完善国家有机肥中对于微塑料污染的规定。

猜你喜欢

污泥塑料污染
污泥处理及资源化再利用研究进展
没听错吧?用污泥和尿液制水泥
污水处理厂污泥减量化技术的探讨
坚决打好污染防治攻坚战
坚决打好污染防治攻坚战
塑料也高级
浅谈城市污水处理厂污泥的处置与资源化利用
塑料的自白书
塑料
对抗尘污染,远离“霾”伏