飞秒激光对多光谱滤波片的损伤阈值研究
2022-09-24王云萍侯军燕康文运陈安民张鲁薇
王云萍,侯军燕,袁 春,康文运,陈安民,张鲁薇
(1.北京跟踪与通信技术研究所,北京 100094; 2.北京市遥感信息研究所,北京 100192; 3.中国科学院 长春光学精密机械与物理研究所 激光与物质相互作用国家重点实验室,长春 130033)
引 言
强激光照射光学元件时能对光学元件造成不可逆的损伤,这个损伤是一个复杂物理的过程,激光特性和元件属性都对损伤的结果有直接的影响,不同特性(如波长和脉宽)的激光对同一元件的损伤结果不同,由于光学元件的制作过程、方法和条件等的不同也会使得元件破环的结果不同。尽管激光参数和元件性质都相同,使用环境和使用条件也会影响元件的破坏效果。在光学元件的应用中,它的损伤和破坏有清晰的评价规则,光学元件光激光的毁伤阈值恰恰是对元件抗毁伤特性最直观的评估,它不仅是保证光学元件正常使用的参照标准,还是研究光学元件损伤机理的重要参数[1-7]。光辐照光学元件时产生的毁伤涉及到光吸收反射、元件升温、激光特性、元件自身属性、多光子过程、激光场以及激光诱导等离子体等物理过程。对应的薄膜损伤机理主要可以分为:热效应和场效应,其中热效应主要存在于较长脉宽和连续照射中,而场效应主要在存在于较短脉冲中[8-9]。光照射光学元件时,光学元件的薄膜将吸收的光子能量并转变成热量,产生个别位置的高温以及高温度梯度,导致激光对薄膜的融化或由于热应力而导致薄膜破裂损伤,其主要由薄膜中存在杂质和缺陷导致的,因此是非本征的。而对于光场效应,主要探究光波传播过程中形成的驻波对光学薄膜进行的毁伤,在激光辐照期间,电子来不及将获得的能量转移到晶格时,毁伤机制主要是非线性的多光子吸收以及电子雪崩,其主要由材料的本身属性所决定,因此是本征的。
目前,国内外学者研究了光学薄膜的破环与激光参量、照射光斑尺寸、光照累积次数等要素之间的联系。LI等人采用输出波长为1064nm的纳秒脉冲激光对HfO2薄膜进行了毁伤测试[10],发现1-on-1和S-on-1(S为脉冲数)两种测试下的损伤阈值分别为15.75J/cm2和11.90J/cm2。S-on-1条件下的毁伤阈值明显低于1-on-1的阈值,这体现了S-on-1测试方式的累积效应。PAN等人采用1064nm波长的激光照射HfO2/SiO2光学薄膜[11],测量了HfO2/SiO2的毁伤阈值,结果发现,毁伤阈值随缺陷的增加而下降,形貌表现为热效应。DENG等人采用输出波长为1064nm和532nm的纳秒脉冲激光对SiO2、HfO2和TiO23种单层薄膜样片进行了损伤测试[12],结果表明,SiO2、HfO2和TiO2的毁伤阈值都随脉冲光频率的增加而减小。WANG等人采用输出波长为355nm的纳秒脉冲激光以1-on-1和S-on-1两种测试方式下对HfO2/SiO2薄膜进行了损伤测试[13],发现1-on-1条件下的损伤阈值远高于S-on-1的损伤阈值。在多次辐射的模式下,影响损伤阈值的主要因素是不可逆的激光诱导缺陷和天然缺陷的累积。SHAN等人采用波长为1064nm和355nm的纳秒脉冲激光对HfO2/SiO2进行了毁伤测试[14],发现1064nm波长的缺陷损伤阈值几乎与532nm波长的缺陷阈值相同。
随着激光技术的发展,人们越来越关注飞秒激光与光学薄膜的损伤研究。YUAN等人研究了飞秒激光诱导ZrO2和HfO2的损伤阈值[15],发现这两种薄膜的损伤形貌不同于纳秒激光的损伤形貌。NGUYEN等人讨论了真空中介质氧化膜的飞秒脉冲损伤阈值[16],发现环境气压不会影响单脉冲飞秒激光的损伤阈值,而多脉冲飞秒激光的损伤阈值随着气压的降低而减小。SHI等人开展了飞秒激光照射HfO2/SiO2薄膜的损伤实验[17],在1-on-1下观测到了膜层剥落的现象。YUAN等人比较了飞秒和纳秒激光诱导单层HfO2膜和HfO2/SiO2高反膜的损伤[18],对于纳秒激光,单层HfO2膜的损伤阈值低于高反膜的损伤阈值;而飞秒激光确相反,单层HfO2膜的阈值高于高反膜的阈值。在纳秒范围内,杂质或缺陷以及热扩散对涂层的激光损伤起着重要作用。基于飞秒激光超快超强的特点,飞秒脉冲照射光学薄膜导致的破坏将不同于长脉冲激光导致的薄膜破坏损伤,强场电离起着重要的作用。
本文中采用钛∶蓝宝石脉冲放大系统输出的飞秒激光作为光源,通过S-on-1的测试方法,对多光谱滤光片的前膜进行了激光毁伤阈值的测试,使用显微镜观测了滤光片前膜的损伤形貌,并对实验结果进行了分析,从脉冲累积以及光场效应对测量的结果进行了解释。
1 实 验
1.1 样品定制
多光谱滤光片不同于传统滤光片,往往需要针对特定的应用场景进行特殊设计。本文中采用电子束蒸发工艺定制了一种基底材料为熔石英的滤光片,图1中给出了滤波片的光谱曲线。该滤光片由于其光谱要求比较特殊,膜层采用非规整结构层,基本的层结构是光学厚度不等的高低折射率材料(Ta2O5和SiO2)交替叠加,前膜为主峰滤光膜,后膜为截止滤光膜,它们具有不同的膜层结构。前膜和后膜的透射光谱曲线如图1a所示,其组合的光谱曲线如图1b所示,光谱范围为440nm~520nm。
Fig.1 Spectral curve of the filtera—spectral curves of front and rear films b—spectral curve of front film and rear film combination
1.2 实验装置
图2中给出了大气环境中飞秒激光对光学薄膜毁伤的实验装置图。实验中采用钛∶蓝宝石脉冲放大系统输出飞秒激光,其波长、宽度分别为800nm和50fs,偏振状态为线偏振。一个由计算机控制旋转的半波片和格兰棱镜对输出的脉冲能量进行调控,脉冲能量的波动低于2%。使用一个平凸聚焦透镜(焦距为10cm)将激光脉冲垂直汇聚到样品表面,通过刀片法测量在此处位置的光斑直径为3μm。待测样品被固定在一个由计算机控制的电动3维平移台(Thorlabs,PT3/M-Z8,精度为±1.5μm)上,平移台最小移动步长为1μm。一个显微镜和相机用于实时观测飞秒脉冲对薄膜毁伤的实验过程,实验结束后使用更精密的显微镜细致观测前后膜的毁伤形貌。
Fig.2 Experimental setup for femtosecond laser damage to optical thin films
1.3 激光损伤阈值测试
采用国际标准ISO11254“S-on-1”作用模式[19],即多次辐照测试。实验过程中,脉冲能量密度逐步降低,直至样品没有被破坏,每个脉冲能量密度采样30个点,每两个脉冲照射点之间距离为200μm,依次记录下每个激光能量密度下损伤的测试点占所有测试点的比例。并对激光辐照次数取不同的值(1,2,5和10),绘制出不同S值对应的破坏几率与脉冲能量密度的曲线图。在降低能量密度过程中,当毁伤几率为零时候,即为相应的激光诱导损伤阈值(laser induced damage threshold,LIDT)[20]。
2 结果与讨论
图3显示了不同S值(1,2,5和10)下毁伤几率随脉冲能量密度的变化以及LIDT与脉冲数的关系。根据图3可以得到S值分别为1,2,5和10时的损伤阈值分别为1.68J/cm2、1.56J/cm2、1.44J/cm2和1.42J/cm2,随着激光照射个数的提高,LIDT不断降低。这是因为激光脉冲的多次辐射将对光学膜产生累积效应,即使用能量密度低于LIDT的激光辐射样品,虽然这个能量密度下的脉冲不足以损伤样品,但对材料表面会产生一个微弱且不可逆的作用,紧接着后续的脉冲会加强这个微弱的作用,当脉冲数目到达一定程度时会对材料表面产生损坏。正是因为累积效应使得S-on-1测试下的LIDT低于1-on-1的LIDT,且S值越大损伤阈值越低,这种现象可以通过显微镜拍摄的图像进行观测。图4是不同S值(1和2)下薄膜损伤形貌图。发现在S=1的情况下,激光能量密度为1.73J/cm2时照射的中心区域模糊不清;而在相同能量密度下,S=2时光斑较清晰。YUAN等人测试了1-on-1和S-on-1下激光对光学薄膜的LIDT[21],发现在1000-on-1方法下的LIDT比1-on-1方法下的LIDT低。WANG等人[13]在1-on-1和S-on-1两种模式下进行激光损伤探测,发现单次辐射激光诱导的LIDT远高于多次辐射的LIDT。
Fig.3 Damage probability and threshold under different S values (1, 2, 5 and 10) for front filma—damage probability b—damage threshold
Fig.4 Damage morphologies of front film under 1-on-1 and 2-on-1
飞秒激光具备的超短和超强性质,它对光学薄膜的毁伤机制主要为非线性的多光子电离、碰撞电离以及隧穿电离。一般认为,当飞秒脉冲的持续区间相对较长时,非线性的多光子电离、碰撞电离共同起作用;当脉宽较短时,由多光子电离形成的自由电子足以对薄膜造成损伤;当脉宽极短时,主要的机制是隧穿电离[22-23]。实验过程中使用的脉宽为50fs,所以只考虑多光子电离对光学薄膜的损伤作用。初始导带电子由多光子电离产生,随后导带电子迅速吸收激光能量,当其能量大于材料的带隙能时会与价带电子发生碰撞产生另一个电子,进而形成极多的自由电子,当它的浓度达到1021cm-3时便会造成薄膜的损伤[22,24]。一般而言,由多光子电离产生的自由电子足够多,而由材料本身的杂质和缺陷产生的电子非常少以至于可以被忽略。所以,飞秒脉冲对光学膜的毁伤是本征的,由材料自身性质决定[25]。薄膜中自由电子的激发过程取决于局部的场强分布,为此,作者计算了薄膜的电场分布。由于膜层为中心厚度不等的非规整膜系结构,因而呈现出与常规滤光片不同的电场分布特性,图5中给出了800nm波长的前膜电场分布。
由图5可以看出,多光谱滤光片前膜确实存在局域的场增强效应,只有前部分膜层有场分布。干涉场的强弱与薄膜驻留的激光能量多少相对应,这样特定的光学薄膜在激光场的辐照下,薄膜某一位置处的脉冲电场越高则LIDT越低[26]。由此可知,前膜的损伤形貌出现逐层剥离的现象,图4验证了这一结论。另外,前膜电场随膜层分布较规律,存在随着薄膜厚度(图5中,QWOT是1/4的波长光学厚度(quarter wavelength optical thickness))的增加,电场强度逐渐下降的趋势。因此,在1-on-1和2-on-1测试方法下,随着飞秒激光能量密度的增加,前膜损伤区域的轮廓越来越清晰、规整,并逐渐出现清晰的分层现象,如图4所示。因此,当前实验条件下,薄膜的损伤机制主要是场效应。
Fig.5 Electric field distribution of front film for 800nm wavelength
3 结 论
利用飞秒激光脉冲对多光谱滤光片的前后膜进行了激光损伤阈值测试,并使用显微镜观测滤光片前后膜的损伤形貌。发现随着照射次数的增加损伤阈值逐渐降低,这主要是由于激光的多次辐射会对光学薄膜产生累积效应所引起的。由于飞秒激光的宽度极短,薄膜导带电子由多光子电离产生,随后导带电子迅速吸收激光能量,当其能量大于材料的带隙能时会与价带电子发生碰撞产生另一个电子,进而形成大量的自由电子,从而对薄膜造成损伤。其次,在1-on-1和2-on-1测试方法下,滤光片前膜损伤区域出现清晰的分层现象。计算的薄膜电场分布表明,电场随着膜层数的增加而下降,电场的分布是薄膜分层损伤的主要原因。