APP下载

低渗透油藏压驱物理模拟与裂缝定量表征

2022-07-30张翼飞孙志刚于春磊贝君平

油气地质与采收率 2022年4期
关键词:岩样模拟实验排量

张翼飞,杨 勇,孙志刚,于春磊,孙 强,贝君平

(1.中国石化胜利油田分公司勘探开发研究院,山东东营 257015;2.山东省非常规油气勘探开发重点实验室(筹),山东东营 257015;3.中国石化胜利油田分公司,山东东营 257001)

近年来,针对低渗透油藏注水井注不进水、采油井采不出油的现状,大庆和吐哈等油田开展了一系列高压注水先导试验,取得了一定的开发效果[1-3]。依据现场实践,胜利油田提出了压驱技术,它是将水力压裂设备与注水开发相结合,通过高压高速注入,在较短时间内提高油藏压力、改善渗流能力,实现提高油井产能及油藏采收率的新技术。自2020年初,胜利油田在渤南和牛庄等区块开展了压驱注水现场试验,初步见到良好效果,从常规注不进到大幅度提高注入量,解决了低渗透油藏注水井长期存在的注不进的问题。但压驱作为一项新技术,对其增注机理和压力传导规律认识不清,压驱井场存在油井见效不均衡的现象。依据对现场实践的认识,推断压驱过程中注水井周围储层岩石产生大量裂缝,但对压驱裂缝的展布形态认识不清。因此有必要在以水为注入介质的条件下,开展压驱裂缝的开启条件和拓展规律的研究。

前人采用岩石力学特征试验机与声发射系统、CT 技术、扫描电镜和激光扫描仪相结合等方法,针对水力压裂裂缝的开启条件及裂缝拓展特征开展了大量研究。结果表明,地层破裂压力与岩石性质、注入条件、天然裂缝发育情况及地应力等因素有关[4-9]。岩石渗透率越大,水力压裂的岩石破裂压力越小[10]。注入排量和注入液黏度越大,岩石破裂压力越大[11]。水力压裂的裂缝形态受原地应力和注入条件等因素影响。小的水平应力差和低的注入排量均会使裂缝网络变得更加复杂[12]。注入液黏度越大,越趋于形成长直缝,裂缝开度增加[13]。针对压驱技术,目前研究采用数值模拟方法,认为滤失距离和裂缝半长是制约压驱效果的关键因素[14]。但基于矿场监测及数值模拟手段难以认识到微米尺度的裂缝特征及压驱过程中形成的主干缝与分支缝之间的配置关系。在高滤失注入条件下形成的压驱裂缝与常规水力压裂裂缝形态是否一致,以及压驱裂缝微观展布特征目前尚无文献报道,亟待建立微观表征方法对压驱裂缝的展布特征开展研究。为此,针对低渗透砂岩岩样,利用自主研发的压驱物理模拟实验装置,开展不同岩石渗透率、不同注入排量和不同围压条件下的压驱破裂压力研究。利用微米CT扫描设备,基于图像处理及数据分析,在微米尺度上开展压驱裂缝的定量表征,建立低渗透砂岩压驱物理模拟实验与裂缝表征方法,以期为有效描述压驱裂缝展布特征和认清压驱增注机理提供理论依据。

1 实验器材与方法

1.1 实验设备

1.1.1 压驱物理模拟实验装置

压驱物理模拟实验采用中国石化胜利油田分公司勘探开发研究院自主研发的压驱物理模拟实验装置(图1)。该装置采用ISCO 泵注系统,恒速模式下实时监测岩心夹持器的进口压力,每隔0.2 s 自动记录压力数据。岩心夹持器可承载直径为2.5 cm或3.8 cm、长度为4~8 cm 的岩心岩样,可提供最大值为30 MPa的三轴围压。

图1 压驱物理模拟实验装置Fig.1 Physical simulation devices for fracturing-flooding

1.1.2 微米CT扫描系统

采用三英NanoVoxel-2000 微米CT 扫描系统(图2)进行压驱物理模拟实验前、后岩样的CT 扫描,其像素分辨率最高为0.5 μm。

图2 微米CT扫描系统Fig.2 Micro-CT scanning system

1.2 岩样制备

压驱物理模拟实验岩样取自胜利油田某区块低渗透砂岩露头岩心,将露头岩心制备成直径为3.8 cm、高度约为10 cm 的圆柱岩样。在岩样上,用外径为6 mm 的金刚石钻头钻一个深度为5 cm 的孔(图3),模拟压驱注水井井口周围储层。岩样基本物性参数如表1所示。

表1 压驱物理模拟实验岩样基本物性参数Table1 Basic physical property parameters of rock samples for physical simulation test of fracturing-flooding

图3 压驱物理模拟实验岩样Fig.3 Rock samples for physical simulation test of fracturing-flooding

1.3 实验步骤

压驱物理模拟实验及裂缝定量表征采用多套设备协同工作,实验步骤主要包括:①在露头岩心上钻取直径为2.5 mm、高度约为5 mm 的圆柱状小岩样,进行微米CT 高分辨率扫描,图像尺寸为1 024×1 024×1 010 像素,像素分辨率为3.44 μm,获取压驱物理模拟实验前岩样的初始孔隙结构及裂缝发育特征。②制备压驱物理模拟实验岩样。③将岩样放入压驱物理模拟实验装置内,采用密度为1.014 2 g/cm³,黏度为0.998 7 mPa·s 的氯化钾溶液作为注入液,分别完成不同注入排量、不同岩石渗透率及不同围压下的压驱物理模拟实验。④压驱物理模拟实验完成后,对岩样进行抽真空干燥处理,将环氧树脂加温至90 ℃,充分抽吸浸入岩样中,在围压为20 MPa 条件下加压24 h,使环氧树脂与岩样充分固结。将经过环氧树脂固结的岩样进行全岩心微米CT扫描,获取裂缝发育的空间位置及展布形态。结合肉眼观测及微米CT扫描图像,在岩样上标记裂缝发育的位置。⑤在标记的裂缝发育位置钻取2.5 mm×5 mm的圆柱状小岩样,完成微米CT高分辨率扫描,对比压驱物理模拟实验前、后岩样的微米CT扫描图像,定量表征压驱裂缝展布形态及孔隙结构。

2 实验结果与分析

2.1 压驱破裂压力影响因素

2.1.1 注入排量

在围压为20 MPa的条件下,通过缓慢提高注入排量和恒定注入排量2 种方式,研究注入排量对压驱破裂压力和液测渗透率的影响。对于岩样1-1,缓慢提高注入排量,当注入排量从0.5 mL/min 逐步提高到35 mL/min 时岩样破裂,岩样的破裂压力和破裂后的液测渗透率分别为27.4 MPa 和6.10 mD(图4a)。对于岩样1-2,采用35 mL/min的恒定注入排量,驱替时间为81 s时岩样破裂,岩样的破裂压力和破裂后的液测渗透率分别为30.8 MPa 和6.31 mD(图4b)。分析结果可知,相同注入排量下,恒定注入方式导致岩样的升压速度较快,从而产生较大的破裂压力。液测渗透率的增幅较大,说明恒定注入方式下产生的裂缝宽度较大。对于岩样1-3,采用80 mL/min的恒定注入排量,驱替时间为36 s时岩样破裂,岩样的破裂压力和破裂后的液测渗透率分别为40.6 MPa和37.24 mD(图4c)。对比岩样1-2和岩样1-3 的测试结果可知,增大注入排量会产生较大的破裂压力和裂缝宽度。

图4 不同注入排量下驱替压力和液测渗透率随驱替时间的变化Fig.4 Displacement pressure and liquid permeability curves with time at different injection rates

2.1.2 岩石渗透率

在围压为20 MPa 的条件下,针对岩样2-1—2-4,注入排量均从5 mL/min 开始逐步提高至岩样破裂。结果表明,当气测渗透率分别为5.40,6.67,12.90 和20.40 mD 时,在注入排量分别为14,12,15和30 mL/min 时岩样破裂,破裂压力分别为38.5,32.0,20.8和12.3 MPa(图5)。由图6可以看出,在高滤失注入条件下,岩样的破裂压力随着岩石气测渗透率的增加呈指数降低。在岩样破裂前,随着泵入流体的增加,泵压曲线呈阶梯式递增形态。在岩样破裂后,气测渗透率较低的岩样泵压曲线产生较大跌落,呈单调递减形态;气测渗透率较高的岩样泵压曲线呈现波动式形态。这种波动式的泵压曲线与水力裂缝和天然裂缝的相互作用增多有关,与裂缝网络的形成有密切关系[15]。

图5 不同渗透率岩样的压驱致裂泵压曲线Fig.5 Pump pressure-time curves of rock samples with different permeability in fracturing-flooding

图6 破裂压力与气测渗透率的关系Fig.6 Relationship between breakdown pressure and gas permeability

2.1.3 围压

将岩样3-1,3-2,3-3 和3-4 分别在围压为5,15,20 和30 MPa 的条件下,逐步提高注入排量至岩样破裂。实验结果(图7)表明,泵压曲线呈锯齿状,当围压为5 MPa时,岩样在注入排量为35 mL/min时发生破裂,岩样破裂压力为6.8 MPa。当围压由15 MPa增至20和30 MPa时,岩样破裂前泵压曲线均呈阶梯状递增,分别在注入排量为45,25 和60 mL/min时发生破裂,破裂压力分别为21.7,31.0 和40.3 MPa。由图8 可以看出,随着围压的增加,岩样破裂压力呈线性增加。

图7 不同围压下的压驱致裂泵压曲线Fig.7 Pump pressure-time curves under different confining pressure in fracturing-flooding

图8 破裂压力与围压的关系Fig.8 Relationship between breakdown pressure and confining pressure

2.2 基于微米CT扫描的压驱裂缝定量表征

CT 扫描技术是通过重建物体空间不同位置对X 射线的吸收系数,使不同密度的材料信息以高分辨率数字图像的形式在计算机上显示出来,图像中不同位置的灰度值反映了岩样中相应位置的组分对X 射线衰减能力的强弱[16]。近年来,伴随着计算机技术和图像处理技术的发展,CT扫描图像的分辨率实现了由毫米级到微米级,再到纳米级的尺度跨越[17-18]。但是,由于CT扫描分辨率与扫描获得的视域呈反比关系,在CT 扫描分辨率提高的同时,岩样尺寸就需要相应的缩小。

2.2.1 压驱前CT扫描图像

压驱物理模拟实验前,对岩样进行微米CT 扫描。由于受到环境条件、传感器元件和信道干扰等多种因素的影响,CT扫描图像在采集、传输、存储和显示的各个环节不可避免地会被一些噪声干扰。在岩心的垂直方向常会出现边缘效应,即在图像的垂向上,顶、底部边界模糊且灰度值比中间部分偏低,在同一亮度和对比度下图像整体偏暗。针对这种情况,利用AVIZO 软件对图像进行处理,将图像顶、底部颜色偏暗的切片及岩心边缘部分裁切,基于中值滤波算法对CT 图像进行滤波降噪。以岩样1-2为例,图像经处理后,观测岩样CT 三维重构图及二维CT切片发现,压驱物理模拟实验前岩样中不存在明显可见的天然裂缝(图9)。

图9 压驱物理模拟实验前岩样1-2的CT三维重构图及二维CT切片Fig.9 3D CT reconstruction and 2D CT slices of Sample1-2 before physical simulation test of fracturing-flooding

采用交互式阈值算法进一步进行二值化分割,将岩样CT扫描图像分割为孔隙和骨架两部分,计算得到岩心孔隙度为4.5%。值得注意的是,岩样1-2在压驱物理模拟实验前,经饱和称重法测定岩样孔隙度为11.2%,基于CT 扫描图像计算的孔隙度明显低于室内实验测试值。造成这种差异的主要原因是:①岩石结构的非均质性导致不同岩样间孔隙度存在差异。②限于CT设备能够提供的最高分辨率,在扫描成像过程中无法检测出小于像素分辨率的孔隙。③经过中值滤波后,大量孤立小孔隙被剔除,导致基于CT 扫描图像计算的孔隙度进一步降低。

基于AVIZO 软件中等效直径算法,计算压驱物理模拟实验前岩样中孔隙直径及其占比。由图10可见,孔隙直径呈现正态分布,其中直径小于30 μm的孔隙占总孔隙的96%,孔隙直径分布峰值为9 μm。

图10 岩样1-2孔隙直径分布Fig.10 Pore diameter distribution of Sample1-2

2.2.2 压驱后CT扫描图像

岩样1-2 完成压驱物理模拟实验后,首先结合肉眼观测和CT 扫描确定岩样中裂缝发育位置(图11),再在裂缝发育位置取样完成高分辨率CT扫描。结合交互式阈值算法和Top-hat 算法,分别提取压驱物理模拟实验后岩样中的裂缝部分和基质中的孔隙部分。由图12 可以看出,在高滤失注入条件下,压驱结束后,岩样中形成沿径向扩展的垂直裂缝,压驱裂缝呈平面状展布特征。在微米尺度上,裂缝扩展路径沿颗粒边界蜿蜒前进。经统计分析,压驱裂缝平均开度为334 μm。压驱物理模拟实验后岩样孔隙度为5.1%,相比压驱物理模拟实验前增加0.6%。直径小于30 μm 的孔隙占总孔隙的87%,孔隙直径分布峰值为13 μm。

图11 压驱物理模拟实验后岩样1-2全岩心CT扫描三维重构图及二维CT切片Fig.11 3D reconstruction and 2D CT slices of Sample1-2 with CT scans of whole core after physical simulation test of fracturing-flooding

图12 压驱物理模拟实验后岩样1-2高分辨率CT三维重构渲染图及二维CT切片Fig.12 3D reconstruction rendering and 2D CT slices under high-resolution CT scans of Sample1-2 after physical simulation test of fracturing-flooding

总的来说,压驱产生裂缝后,孔隙结构发生变化,中大孔隙部分所占比例明显增加,孔隙直径分布曲线右移,孔隙度增幅为0.6%,岩石基质中孔隙体积整体变大,分析这是压驱增注的机理之一。

3 结论

压驱破裂压力受注入排量、岩石渗透率和围压的影响。压驱破裂压力随注入排量的增加而增大,随岩石渗透率的增加呈指数降低,随围压的增加呈线性增大。

在高滤失注入条件下,压驱结束后,岩石中形成沿径向扩展的垂直裂缝,压驱裂缝呈平面状展布特征。在微米尺度上,裂缝扩展路径沿颗粒边界蜿蜒前进。

压驱物理模拟实验后,岩石岩样孔隙度略有增加,其中小孔隙占比减小,孔隙直径呈现整体增大的趋势。

建立的压驱物理模拟与压驱裂缝定量表征方法,能够有效监测高滤失注入条件下低渗透砂岩的压驱破裂压力,实现微米尺度上的压驱裂缝定量表征,为压驱现场参数的优化及压驱增注机理的认识提供理论依据。

猜你喜欢

岩样模拟实验排量
高应力状态下大理岩受异源扰动声发射响应研究 ①
温度效应对隧道围岩影响的试验研究
频繁动力扰动对围压卸载中高储能岩体的动力学影响*
2019年1月乘用车销售汇总表
静水压力对岩石在等离子体冲击下 压裂效果的影响*
模拟实验在中职学校会计教育中的重要性研究
2015年10月基本型乘用车(轿车)销售汇总表
2015年10月基本型乘用车(轿车)生产汇总表
弹道修正模拟实验装置的研究
云南中医学院临床技能综合模拟实验教学中心简介