APP下载

南唐二陵壁画历史保护修复材料的分析

2022-07-28赵金丽苏伯民于宗仁柴勃隆

文物保护与考古科学 2022年3期
关键词:甲基丙烯酸甲酯苯乙烯共聚物

赵金丽,苏伯民,于宗仁,柴勃隆,王 卓

[1. 国家古代壁画与土遗址保护工程技术研究中心(敦煌研究院),甘肃酒泉 736200;2. 甘肃省敦煌文物保护研究中心,甘肃酒泉 736200]

0 引 言

南唐二陵位于南京市江宁区祖堂山南麓,包括公元943年安葬南唐开国皇帝李昪及其皇后宋氏的钦陵和公元961年安葬中主李璟及其皇后钟氏的顺陵,是五代十国时期最大的帝王陵寝。于1950年至1951年由南京博物院组织发掘,1998年列为全国重点文物保护单位,二陵均为砖石结构多室墓,陵墓建筑保存完整[1]。二陵墓壁表面以仿木建筑形式勾勒出柱枋和斗拱造型,表面均绘有色彩鲜艳的壁画,自发掘开放以来,墓室内表面壁画也出现了严重风化、盐害酥粉和冷凝水等几类病害,造成了不同程度的壁画褪色、脱落,2004年和2009年先后两次对二陵壁画病害进行详细调查分析,并对壁画进行保护修复,去除了壁画表面霉菌、苔藓、藻类以及表面土锈等[2]。随着墓室内环境温湿度的不断变化,目前二陵中已经修复的壁画又产生起甲、酥碱、地仗层脱落等病害,未修复区域的壁画病害也在不断地发生、发展,因此,保护修复材料的分析对保护修复材料的筛选、使用效果评价和壁画病害机理的研究具有重要意义。

用于壁画的保护修复材料多为天然或人工合成的有机高分子聚合物[3],在复杂的墓室环境中,受温湿度、光照、CO2浓度等环境因素变化、壁画颜料以及胶结材料的影响,随着时间推移发生老化降解,并且可允许从壁画上所取的样品量极小,因此,墓葬壁画保护修复材料的分析研究极具挑战性。以往关于壁画保护修复材料的研究主要是对标准样品的物理性质评价和成分分析[4-10],对壁画中已经使用的保护修复材料研究较少[11-14],针对墓葬壁画保护修复材料的相关分析还未见报道,本研究基于多光谱摄影、红外光谱以及热裂解-气质联用技术,以南唐二陵壁画保护修复材料为例,初步构建针对墓葬壁画保护修复材料的分析方法体系,研究结果将为墓葬壁画保护修复材料的鉴定、修复效果评价以及病害机理研究提供科学依据。

1 样品和方法

1.1 样品信息

为确定二陵壁画所使用的保护修复材料成分,利用多光谱摄影技术分别对二陵壁画进行现场紫外激发可见荧光摄影调查,在具有强烈荧光且破损严重的位置采集微量样品带回实验室进行成分分析,详细样品信息列于表1,取样时严格遵循《古代壁画现状调查规范》中的相关规定,样品规格均≤0.5 mm×0.5 mm。

表1 壁画保护修复材料样品信息

1.2 实验仪器及参数

多光谱摄影系统:采用紫外激发可见荧光摄影滤光系统选用Kodak公司Wratten No.2E滤膜,辐射波段:254~365 nm,发射波段范围:400~700 nm,中心波段:450 nm。

显微红外光谱:Thermo Scientific Nicolet iN10 MX显微红外光谱仪,液氮冷却,扫描范围4 000~675 cm-1,分辨率4 cm-1,扫描次数64。

热裂解-气质联用由日本Frontier公司EGA/PY3030D热裂解器结合美国Agilent公司7890B-5977B气质联用仪所组成,其中气相色谱的色谱柱为HP-5MS(30 m×250 μm×0.25 μm)非极性毛细管柱。热裂解条件:样品的热裂解温度600 ℃,热解时间0.2 min,注射器和色谱仪连接的界面温度300 ℃,进行实验时,取约0.2 mg样品置于不锈钢样品池中,放入热解专用的石英衬管内进行测试。气相色谱条件:柱箱初始温度设为60 ℃保持5 min,然后以7 ℃/min的速率升温至200 ℃保持2 min,再以2.5 ℃/min的速率升温至220 ℃保持5 min,氦气流速1 mL/min,分流比50∶1。质谱条件:采用电子轰击电离源、单四极杆质量检测器获取质谱图,离子源温度280 ℃,四极杆温度150 ℃;全扫描模式,扫描速度1 scan/sec,扫描范围50~710m/z,扫描时间1 h,质谱鉴别化合物使用NIST 07数据库。

2 结果与讨论

2.1 多光谱摄影调查

多光谱摄影无损调查,通过紫外和红外多光谱条件下图像获取,利用不同物质对不同波段光谱能量吸收和反射程度不同而产生不同光谱发射特性,通过与标准光谱图像数据库的对比,可初步判定材料的类别[15],目前该方法已经应用于不同类型文物制作材料和工艺研究以及历史人为修复材料的调查[16]。用于文物修复的大多为有机材料,这些有机材料吸收紫外辐射后,电子产生跃迁激发荧光团,此类光波属于可见光范畴,保护修复材料用于在壁画完成后受温湿度、微生物等环境因素影响发生病害时的壁画表面加固或起甲部位回帖,一般存在于壁画表面,使用紫外激发可见荧光摄影探查壁画中保护修复材料的位置不受原始壁画制作材料的干扰,因此,可利用紫外激发可见荧光摄影技术对陵寝中历史保护修复材料的分布区域进行探查并准确确定取样分析的位置。如图1a,1c中所示,在样品的可见光照片中并不能看到有保护修复材料存在的痕迹,而图1b,1d中,在紫外激发可见荧光拍摄的图像中部分区域表现出明显的淡蓝色荧光,可以初步确定保护修复材料的分布区域,在箭头所指的荧光最强位置取少量样品进一步进行成分分析。

图1 样品的多光谱摄影照片Fig.1 Photos of the samples by multispectral photography

2.2 显微红外光谱分析

为了确定样品中保护修复材料的分子组成和结构,对所取样品进行显微红外光谱分析,如图2所示为样品NQBNW21S和NSMEW71S的分析结果,光谱图中3 000 cm-1处出现的吸收峰为苯环中=CH的伸缩振动峰,2 849~2 923 cm-1处出现的吸收峰为亚甲基-CH2-伸缩振动峰和甲基-CH3的伸缩振动峰,1 730 cm-1附近出现的吸收峰是由酯基中C=O的伸缩振动引起的,1 150~1 200 cm-1和1 242~1 270 cm-1附近两处为C-O-C的不对称伸缩振动峰和对称伸缩振动峰,1 608 cm-1和702 cm-1处的吸收峰为苯环中CH的弯曲振动峰,此外,在3 082cm-1和1 821 cm-1附近没有出现强的振动吸收峰,表明不存在不饱和的C=C双键,说明保护修复材料中存在甲基丙烯酸甲酯-苯乙烯共聚物[17]。对比样品NQBNW21S和NSMEW71S的红外光谱图,各基团的振动峰值相近,证明两个样品中保护修复材料的成分基本相同。图中除了甲基丙烯酸甲酯-苯乙烯共聚物的特征峰外,在1 400 cm-1附近还有一些未知化合物的吸收峰。此外,用于文物保护修复材料多为高分子聚合物,分子结构较为复杂,有些物质的官能团可能会出现吸收峰重叠或被包含的现象,无法得到准确的分析结果,还需进一步开展热裂解-气质联用分析。

图2 保护修复材料样品的显微红外光谱Fig.2 Micro-FTIR spectra of the samples

2.3 热裂解-气质联用分析

热裂解-气质联用(Py-GC/MS)技术因样品制备简单,无需水解和衍生化等复杂前处理,可直接对固体、液体样品进行分析,具有灵敏度高、检测限低、所需样品量少(~1mg)等优势而成为研究文物中有机胶结材料的有效手段[18-20]。为了进一步研究南唐二陵壁画保护修复材料组成信息,对样品进行热裂解-气质联用分析。

图3是NQBNW21S样品Py-GC/MS分析的TIC图,表2是与之相关的裂解碎片保留时间、质荷比、碎片中文名称、分子式及峰面积信息。表2中保留时间分别在2.092 min、5.330 min的甲基丙烯酸甲酯和苯乙烯单体以及图4a甲基丙烯酸甲酯、图4b苯乙烯单体的质谱图,可证明保护材料中含有苯乙烯-甲基丙烯酸甲酯共聚物,其余碎片峰均为共聚物单体的二级裂解产物。据报道,聚甲基丙烯酸甲酯聚合物的热解是通过自由基机理将聚合物降解转化为单体,聚合物链热解断裂形成两个大的自由基,随后每个自由基的β-位置碳链发生断裂生成不饱和单体分子,另一个相同的自由基重复该解聚反应[9],因此,通过甲基丙烯酸甲酯和苯乙烯单体确定样品中存在苯乙烯-甲基丙烯酸甲酯共聚物,该结果和红外光谱一致。

图3 NQBNW21S样品的Py-GC/MS谱图Fig.3 Py-GC/MS spectrum of Sample NQBNW21S

图4 甲基丙烯酸甲酯和苯乙烯质谱图Fig.4 Mass spectra of methyl methacrylate and styrene

表2 NQBNW21S样品Py-GC/MS分析的特征热解产物

图5a是NSMEW71S样品Py-GC/MS分析的TIC图,表3是与之相关的裂解碎片保留时间、质荷比、碎片中文名称、分子式及峰面积信息。可将样品裂解产物分为三类,其中保留时间2.319 min和5.479 min的甲基丙烯酸甲酯和苯乙烯单体可知保护修复材料中含有苯乙烯-甲基丙烯酸甲酯共聚物,保留时间8.120 min和10.185 min的碎片峰为共聚物单体的二级裂解产物。醋酸(保留时间:1.66 min)、多烯(保留时间:3.284,3.455 min)、芳香化合物(保留时间:2.921,5.479 min)和多环芳烃(保留时间:12.556,13.859,15.109,35.127 min)均为聚醋酸乙烯酯的特征热解产物,在热解条件下,通过侧基消除反应机理进行两步降解,第一步失去醋酸分子,生成不饱和聚合链,然后进一步通过断键和芳香化反应裂解产生多烯等化合物[21-22],这说明样品中还存在含量较低的聚醋酸乙烯酯。此外,裂解产物中保留时间分别在3.948 min呋喃甲醛、6.164 min呋喃酮、9.391 min环戊二酮及其衍生物等均为多糖类物质的特征峰,这是调和地仗灰浆石灰层时所添加的糯米汁渗入颜料层所致[23]。以糯米灰浆为代表的中国传统灰浆在我国南北朝时期(公元386—589年)就已经成为比较成熟的技术,明朝《天工开物》对糯米灰浆的组成、制作方法等均有详细记载:“灰一分入河砂,黄土二分,用糯米、羊桃藤汁和匀,经筑坚固,永不隳坏,名曰三合土”[24-25],此处制作地仗灰浆材料时加入糯米汁以加强地仗强度、韧性和防渗等性能。聚醋酸乙烯酯和多糖类物质的发现也说明Py-GC/MS的分析结果可以完善红外光谱的分析结果,并进一步补充保护修复材料的成分信息,Py-GC/MS技术需要的样品量极少,检测结果给出指纹特征峰,且一次进样能实现多种成分同时鉴定,是一种适合墓葬壁画保护修复材料分析的高效、快速的方法。

图5 NSMEW71S的Py-GC/MS谱图和呋喃甲醛的质谱图Fig.5 Py-GC/MS spectrum of Sample NSMEW71S and mass spectrum of furfural

表3 NSMEW71S样品Py-GC/MS分析的特征热解产物

表4为保护修复材料样品红外光谱和Py-GC/MS的分析结果。从表中可以看出NQBNW23S和NSFCWW64S样品中并未检测到保护修复材料,其余样品中均检测到苯乙烯-甲基丙烯酸甲酯共聚物,在NQBNW20S和NSMEW71S样品中还检测到少量PVAc,且从图5和表3的峰面积百分比可以看出样品NSMEW71S中PVAc的含量较低。这可能是由于此处进行壁画修复时PVAc比苯乙烯-甲基丙烯酸甲酯共聚物使用的时间较早,受光照、温湿度等环境因素和共存颜料的影响发生老化降解,也可能是共聚物比单一聚合物的物理化学性质更加稳定。这些实验结果可以为后续保护修复材料的使用效果评价和不同材料老化降解机理研究提供基础。

表4 壁画保护修复材料样品分析结果

3 结 论

使用多光谱摄影确定了钦陵和顺陵壁画保护修复材料的分布区域和取样位置,利用红外光谱和热裂解-气质联用对材料进行了成分分析,首次对潮湿环境下墓葬壁画保护修复材料进行研究,初步探索了墓葬壁画保护修复材料分析方法。实验结果显示,南唐二陵壁画保护修复材料中存在苯乙烯-甲基丙烯酸甲酯共聚物和聚醋酸乙烯酯。本研究表明热裂解-气质联用结合红外光谱是一种高效、快速的墓葬壁画保护修复材料的成分分析方法。

南唐二陵壁画保护修复材料样品中检测出的聚醋酸乙烯酯含量较少,且在修复区域内也观察到起翘现象,这可能是受环境因素影响老化降解,也可能是本身性质没有共聚物稳定。该研究也为后续壁画保护修复材料的使用效果评价和老化降解机理研究提供方法参考。

猜你喜欢

甲基丙烯酸甲酯苯乙烯共聚物
两嵌段共聚物软受限自组装行为研究
悬浮聚合法制备窄尺寸分布聚甲基丙烯酸甲酯高分子微球
自聚甲基丙烯酸甲酯的结构及性能
乙酰丙酮钕掺杂聚甲基丙烯酸甲酯的光学光谱性质
苯乙烯装置塔系热集成
双亲嵌段共聚物PSt-b-P(St-alt-MA)-b-PAA的自组装行为
K/γ-Al2O3催化丙酸甲酯合成甲基丙烯酸甲酯
DADMAC-AA两性共聚物的合成及应用
中国8月苯乙烯进口量26万t,为16个月以来最低
AM/AA/AMPS/AMQC12AB 四元共聚物的合成及耐温抗盐性研究