时滞控制下轴向运动纳米梁横向振动的稳定性研究
2022-07-06朱灿李梦瑶
朱灿 李梦瑶
摘要:在轴向运动纳米梁系统中,速度会使系统产生力学行为复杂的横向振动,且对系统运行的稳定性有很大的影响。将时滞控制方法应用在两端简支条件下的轴向运动纳米梁系统中,通过动力系统分支理论和幂级数法来考察系统运行的稳定性。结果表明,时滞和反馈增益系数对两端简支轴向运动纳米梁系统的稳定区域有很大影响,恰当的时滞控制能够有效增强系统的稳定性,并可以消除系统的耦合颤振失稳现象。
关键词:时滞控制;稳定分析;幂级数法;纳米梁;轴向运动
中图分类号:O322;O29文献标志码:A
纳米梁是纳机电系统(nano-electromechanical system,NEMS)的基本组成结构,纳米梁加工工艺研究、纳米梁力学电学测试研究以及纳米梁在集成电路和传感器领域中应用研究具有重要意义。MOTE[1-3]对物体轴向运动诱发产生的横向振动已有了很好的研究。YANG和TAN等[4-5]研究了轴向运动梁外部激励和稳态响应固有频率之间的关系。Z等[6]以轴向加速运动梁为研究对象,利用摄动法对该系统进行求解,分别对运动速度的波动频率接近系统自然频率2倍时出现的主参数共振情况以及速度的波动频率为系统两个自然频率的和时出现的组合参数共振情况进行分析,讨论不同共振情况下系统的稳定性。李晓军和陈立群[7]以两端固支的轴向运动梁为研究对象,建立一种数值解析的方法,求解得到系统发生横向振动的自然频率和模态。杨晓东和唐有绮[8]在复模态分析的基础上,得出轴向运动梁系统在发生横向振动时的频率和模态。 SATO等[9]利用中心流形定理和平均法研究带有时滞的非线性动力系统稳定周期解及其稳定性,讨论时滞对该系统自由振动和受迫振动的影响。LIU等[10]研究一种时滞反馈控制参数的求解方法,并运用最优化控制方法对非线性振动系统进行减振控制。SHANG等[11-12]基于Helmoholtz振荡器系统,给出时滞位移反馈对其安全流域分形侵蚀的影响。LIU等[13]以一类时滞控制下的悬臂梁为研究对象,通过系统的一次和二次共振,发现速度时滞及其反馈系数可以有效地提高该系统的稳定性。关于时滞对轴向运动梁的控制的相关研究还处于初级阶段,为此,文中采用轴向运动纳米梁模型,通过动力系统分支理论和幂级数法,研究系统在时滞控制下轴向运动纳米梁的振动行为和稳定区域。
1理论模型
2次谐波共振稳定性研究
3組合参数共振稳定性研究
4结论
研究了两端简支的轴向运动纳米梁系统在发生横向振动时,时滞控制对系统稳定性的影响。结果如下:
1)时滞和反馈增益系数对两端简支轴向运动纳米梁系统的稳定区域有很大影响,恰当的时滞控制能够有效增强系统的稳定性,并可以消除系统的耦合颤振失稳现象。
2)当系统发生次谐波共振时,位移时滞量、速度时滞量和位移反馈增益系数对系统发生次谐波共振的稳定区域影响较小,但稳定性随着速度反馈增益系数的增加而减弱。
3)当系统发生组合参数共振时,位移时滞量对系统稳定性的影响较小,位移反馈增益系数增大会减弱系统的稳定性,速度时滞量和速度反馈增益系数增加则会增强系统的稳定性。参考文献:
[1]MOTE C D. A study of band saw vibration[J]. Journal of the Franklin Institute, 1965, 279(6): 430-444.
[2] MOTE C D. On the non-linear oscillation of an axially moving string[J]. Journal of Applied Mechanics, 1966, 33(2): 463-464.
[3] MOTE C D. Dynamic stability of axially moving materials[J]. Shock and Vibration Digest, 1972, 4(4): 2-11.
[4] YANG B, TAN C A. Transfer function of one dimensional distrubuted parameter systems[J]. Journal of Applied Mechanics, 1992, 59(4): 1009-1014.
[5] TAN C A, CHUNG C H. Transfer function formulation of constrained distributed parameter systems[J]. Journal of Applied Mechanics, 1993, 60(4): 1004-1011.
[6] Z H R, PAKDEMIRLI M, BOYACL H. Non-linear vibrations and stability of an axially moving beam with ti-me-dependent velocity[J]. International Journal of Non-Linear Mechanics, 2001, 36(1): 107-115.
[7] 李晓军, 陈立群. 关于两端固定轴向运动梁的横向振动[J]. 振动与冲击, 2005, 24(1): 22-23.
[8] 杨晓东, 唐有绮. Timoshenko模型轴向运动梁的横向振动特性分析[J]. 机械强度, 2008(6): 903-906.
[9] SATO K, YAMAMOTO S, OKIMURA T,et al. Dynamic motion of a nonlinear mechanical system with time delay: analysis of the forced vibration by an averaging method[J]. Transactions of the Japan Society of Mechanical Engineers Series C, 1995,61(585):1861-1866.459EE679-44BB-44BD-8CBE-ABA3FE118A74
[10]LIU C C, JI H L, SUN H Y, et al. Optimal delayed control of nonlinear vibration resonances of SDOF system[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2014, 31(1): 49-55.
[11]SHANG H L, WEN Y P. Erosion of safe basins in a softening duffing system and its control with time-delay position feedback[J]. Journal of Vibration and Shock, 2012,31: 11-15.
[12]SHANG H L, HAN Y B, LI W Y. Suppression of chaos and basin erosion in a nonlinear relative rotation system by delayed position feedback[J]. Acta Physica Sinica, 2014, 11: 88-95.
[13]LIU C X, YAN Y, WANG W Q. Primary and secondary resonance analyses of a cantilever beam carrying an intermediate lumped mass with time-delay feedback[J]. Nonlinear Dynamics, 2019, 97(2): 1175-1195.
[14]ERINEGEN A C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves[J]. Journal of Applied Physics, 1983, 54(9): 4703-4710.
[15]YANG X D, ZHANG W. Nonlinear dynamics of axially moving beam with coupled longitudinal-transversalvibrations[J]. Nonlinear Dynamics, 2014, 78(4): 2547-2556.
(責任编辑:曾晶)
Stability Analysis and Time Delay Feedback of
Axially Moving Nano Beams
ZHU Can, LI Mengyao
(Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China)Abstract: Due to the existence of the velocity, the system will have lateral vibration behavior during the operation of the axially moving nano beams system. The mechanical behavior is very complex and will affect the stability of the system during the operation. In this paper, the timedelay control is applied to the axially moving nano beams system with both sides simply supported. The stability of the system is investigated by means of the dynamic system branching theory and the power series method. The results show that different delay and feedback gain coefficients will affect the stability region of the axially moving nano beams system, and appropriate delay control can effectively enhance the stability of the system, and eliminate the coupling flutter instability of the system.
Key words: time delay feedback; stability analysis; power series method; nano beams; axial motion459EE679-44BB-44BD-8CBE-ABA3FE118A74