基于复合指纹图谱和贝叶斯模型的茅尾海悬浮颗粒物源解析
2022-06-29刘海霞李素霞刘广龙黄凯旋苏静君张晋谊侯景耀
刘海霞,李素霞,刘广龙,黄凯旋,杨 斌,苏静君,王 杰,张晋谊,侯景耀
基于复合指纹图谱和贝叶斯模型的茅尾海悬浮颗粒物源解析
刘海霞1,2,3,李素霞2,3*,刘广龙2,4**,黄凯旋5,杨 斌3,苏静君5,王 杰4,张晋谊2,侯景耀2
(1.桂林理工大学环境科学与工程学院,广西 桂林 541006;2.北部湾大学资源与环境学院,广西 钦州 535011;3.北部湾大学,广西北部湾海洋灾害研究重点实验室,广西 钦州 535011;4.华中农业大学资源与环境学院,湖北 武汉 430070;5.中国科学院生态环境研究中心,城市与区域生态国家重点实验室,北京 100085)
为明确茅尾海中悬浮颗粒物的来源,采集了茅尾海流域红树林土壤、堤岸土、河口颗粒物、茅尾海沉积物以及湾外颗粒物等悬浮颗粒物潜在源样品.基于多元统计复合指纹图谱方法,筛选出最佳指纹因子组合,进而通过贝叶斯混合模型得出五种潜在源对茅尾海悬浮颗粒物的贡献率.结果表明:Mg、Al、Mn、Pb、Fe五种指纹元素可作为最佳指纹因子组合,累计判别正确率为78%.贝叶斯混合模型结果显示,茅尾海悬浮颗粒物主要来源于河口和湾外输送,贡献率最高达到58.9%和68.6%.其中,靠近河口区域主要受河流汇入影响,其贡献率达到42.2%~58.9%;靠近湾外区域则以湾外颗粒物贡献为主,贡献率达到44.9%~68.6%.各点位的沉积物贡献率均较低,红树林土壤和堤岸土的贡献率都在10%左右.总的来说,由河口汇入和潮汐作用带入的颗粒物是茅尾海悬浮颗粒物的主要来源.
贝叶斯模型;复合指纹图谱;颗粒物;源解析
茅尾海位于广西壮族自治区钦州市南部海域,是我国最大的近江牡蛎天然采苗区.近年来,由于茅尾海海洋工程的建设、养殖业的过度发展,茅尾海的污染日益加重[1].据《广西海洋环境状况公报》[2]显示,2017年经由钦江、茅岭江入海的化学需氧量分别为32960t和39000t,占污染物总量的近95%,是最主要的入海污染物,其次为氮磷营养盐.研究表明:化学需氧量、无机氮以及磷酸盐已成为影响钦州海域水质状况的主要因素[3].2003~2010年的水质监测数据表明,茅尾海的水质从贫营养往中度富营养和重富营养化发展,已属于轻度污染[4].尽管2008年在国务院批复的《广西北部湾经济区发展规划》[5]的要求下开展了污染整治和海域生态功能恢复行动,但是茅尾海湾的水体富营养化程度并未发生明显降低,对海域的持续健康发展造成了极大的潜在隐患.
水体中悬浮颗粒物作为营养盐的重要载体,其迁移转化对水体营养盐的循环过程及其生态效应具有重要影响[6].已有研究表明,水体中悬浮的颗粒物可经生物矿化或光化学分解释放出溶解态无机盐,进而为浮游植物的生长提供营养[7-9].造成水体富营养化的颗粒物正磷酸盐是颗粒物生物可利用性磷的重要来源[10].水体中的颗粒物也是重金属的重要载体[11].在水体悬浮颗粒物迁移过程中的污染物吸附、贮存和解吸等环境行为对水生态系统造成潜在的巨大危害,由此引发的水体富营养化以及人体健康风险等问题已成为流域水环境研究的热点[12-13].追溯悬浮颗粒物的来源是控制非点源污染以及更合理实施水土保持方针的重要前提.因此,追溯茅尾海颗粒物来源对控制水体中悬浮颗粒物浓度继而提升茅尾海水质具有重要意义.但由于海湾水体中悬浮颗粒物来源广泛且认知不清,致使其靶向控制举措的提出缺乏科学依据.
复合指纹技术作为研究泥沙及悬浮颗粒物来源的有效手段能反映土壤侵蚀、泥沙输移和沉积特征.该技术基于侵蚀源地的土壤特征筛选具有诊断能力的复合指纹因子,利用质量平衡模型建立源地土壤与悬浮颗粒物的定量关系,最终获得各源地的相对贡献率[14].近年来,复合指纹识别技术在流域泥沙溯源示踪方面已经得到了广泛的应用,尤其在英国[15-17]、美国[18-19]和澳大利亚[20-22]等发达国家和地区.早在20世纪90年代,Collins等[23]运用复合指纹图谱结合多元混合模型,评估了英国Dart流域和Plynlimon试验小流域的泥沙来源.2003年,Krause等[24]筛选出137Cs和部分重金属指标作为复合指纹因子,在前人研究的基础上,创新性地运用FR2000混合模型计算了各泥沙源的贡献比例及不确定度. 2009年,Poleto等[25]研究发现随着复合指纹因子数量的增加,泥沙来源的不确定性水平有降低趋势. 2013年,Gellis等[26]选择样品的营养元素(TOC、TN、TP)和碳氮稳定同位素(δ13C、δ15N)以及金属元素作为复合指纹因子,发现河岸带的泥沙贡献率最大,占比约53%,并且融雪期的河岸带侵蚀速率最大.
国内学者在长江流域[27-30]、黄土高原[31-33]、西南地区[34-35]、东北黑土区[36-37]以及福建红壤和花岗岩崩岗区[38-40]等地区也采用指纹识别法开展泥沙溯源研究,在指纹因子的扩选、复合指纹的应用和溯源模型的选择等方面均取得了良好的进展.关于贝叶斯混合模型已广泛地应用于稳定同位素以及植物水分来源等研究中,但却鲜有运用复合指纹识别技术与贝叶斯混合模型结合进行悬浮颗粒物溯源的报道.据此,结合茅尾海这种特殊的地理环境,本研究选取茅尾海流域及其入海河口作为研究对象,基于复合指纹图谱和贝叶斯溯源模型对茅尾海中悬浮颗粒物进行来源解析,细化溯源结果,清楚茅尾海区域的主要悬浮颗粒物来源,从而能够更加精准地控制源地颗粒物流失,以便于水生态环境管理.以期为茅尾海水质提升策略的制定提供科学依据.
1 材料与方法
1.1 研究区域概况
茅尾海位于钦州湾北部,所辖海域面积约135km2,是一个典型内宽口窄的椭圆形半封闭内湾[41],该区域属亚热带海洋性季风气候,年均降雨量2104.2mm,高温多雨、夏长冬短[42],潮汐为不规则全日潮,平均潮差为2.51m[43].钦江、大榄江、茅岭江是流入茅尾海的主要河流[2],受钦江、大榄江、茅岭江等主要入海河流的影响形成了独特的河口—海湾—湿地多生态系统[44].红树林作为该海岸带重要的生态系统之一,与堤岸土不同的是其具有维护生物多样性、促淤固滩、净化水质等功能的同时对全球环境和气候具有重要指示意义.茅尾海也是近海牡蛎的全球种质资源保留地和我国最重要的养殖区与采苗区[44],是“中国大型牡蛎之乡”,盛产大型牡蛎、青蟹、对虾、石斑鱼等,其主要养殖区域位于茅尾海北部区域.尽管钦州市政府发布了《茅尾海综合整治规划》,进行了多项综合修复和修复工程,但茅尾海的健康发展仍受到环境污染胁迫.
1.2 样品采集与分析
1.2.1 潜在悬浮颗粒物源地划分及样点布设 收集研究区域及其周边环境等资料,结合研究区域及周围土地利用类型实际情况,将物源类型划分为红树林土壤(S2)、堤岸土(S3)、河口颗粒物(S4)、茅尾海沉积物(S5)以及湾外颗粒物(S6)五种,沉积物样点对应点位为茅尾海水柱的样点(C1~C14)再根据划分好的物源类型布设采样点,并保证每个种类至少采集10个以上样品以减小组内变异.采样点位置见图1.
处理来自潜在源头的悬浮颗粒物和土壤.利用采水器在样点附近共采集60L水样,通过高速冷冻离心获得水样中的悬浮颗粒物.利用悬移质采泥器在样点附近多点采集表层(0~2.5cm)沉积物样品,样品采集后放入透气性好的聚乙烯袋中密封保存,直至样品分析.土壤样品利用洛阳铲采集表层土壤(0~5cm)的样品,放入透气性好的聚乙烯袋中密封保存,直至样品分析.将采集的物源土壤与悬浮颗粒物样品经过风干和烘干处理后放入研钵中研磨,过100目筛.称取0.1g(精确到±0.0001g)样品,加入9mL浓硝酸和3mL氢氟酸,微波消解.使用电感耦合等离子体质谱仪(ICP-MS)测定样品中的地球化学元素,共13种,即Al、As、Ca、Cd、Cr、Cu、Fe、K、Mg、Mn、Ni、Pb、Zn.
图1 采样点位置
1.2.2 保守性检验 一系列因素可以影响自然环境中示踪剂的保守性,包括氧化还原电位、温度、选择性颗粒迁移、吸附/解吸或沉淀/溶解反应等.因为这些因素,悬浮颗粒物在迁移过程中可能会发生指纹因子的改变,因此需要通过统计检验的手段排除这些可能会影响最终溯源结果的干扰因子.为评估示踪剂的保守性,使用范围检验来识别非保守示踪剂,将悬浮颗粒物样品中的示踪剂浓度与源样品最小和最大值之间的范围进行比较.
1.2.3 指纹因子筛选 采用复合指纹图谱法进行悬浮颗粒物来源示踪,需筛选一组具有统计意义上最佳判别能力的复合指纹识别因子[29].采用了两种统计方法筛选能够区分源物质的复合指纹组合:
(1)通过Kruskal-Wallis H检验(K-W H),筛选各潜在物源之间差异显著的指纹.
(2)利用K-W H检验和判别函数分析(DFA)的组合,筛选一组判别能力最强的组合指纹因子.
利用SPSS计算K-W统计量H及其概率值进行检验,并与显著性水平(一般取0.05)比较.若<,表明该属性在组间具有显著性差异,可以作为潜在的指纹因子,进入下一步检验.
通过K-W H检验在潜在颗粒物来源之间显示出统计学显著性差异的示踪剂进一步用于判别分析.DFA的理论基础是提供一组可以区分源物质组别的权重.然后,这些权重可以被用于区分源物质,提供它们属于每个可能的源组的概率.在每个判别步数中,选择的颗粒物示踪剂会最大程度地降低整体Wilks’lambda.当所有样本均已正确分类时,或在给定步数中可用于包含的其余所有属性均不具有改善源辨别力的能力时,逐步判别过程将停止.
1.2.4 模型的构建 根据采集颗粒物的指纹因子浓度[40],利用构建多元混合模型的手段(例如IsoSource, MixSIR,SIAR,MixSIAR)来进行溯源解析[45].其中,贝叶斯混合模型(Bayesian mixing models)包含3种模型(分别是MixSIR,SIAR和MixSIAR).对于不确定性的定量化分析,贝叶斯混合模型由于其在利用先验信息以及捕获不确定性来源方面具有更为明显的优势[46],因而在生态学中应用较为广泛,经常应用于流域泥沙溯源[47]、植物水分溯源[45-48]、污染物溯源[49-52]和食物网营养溯源[53-54]等领域的研究.贝叶斯混合模型通过引入贝叶斯统计理论,并考虑源数值的不确定性、分类协变量和连续协变量以及先验信息等,对简单的线性混合模型进行了改进.与MixSIR和SIAR等模型相比较,MixSIAR模型结合了多种来源,并基于先验信息的不确定性、连续协变量和乘法误差结构,提高了“源”对“汇”贡献率的计算准确性[45].
根据贝叶斯理论,所有f(每个源对目标悬浮颗粒物样本的贡献率)的后验概率分布与先验概率分布成正比,再乘以似然函数,然后除以它们的总和,即:
式中:(data|f)是给定数据f的似然函数;(f)表示基于先验信息的先验概率;f是个通过Dirichlet分布随机生成的向量,表示颗粒物源贡献比例.似然函数的计算公式如下:
式中:μ、σ分别为根据随机抽取的f计算获得的悬浮颗粒物样品中第个指纹因子的均值和标准差;X代表第个颗粒物样本的第个示踪剂;为颗粒物源的个数.其中,μ和σ的计算公式如下:
式中:mSourcei表示第个颗粒物来源的第个颗粒物示踪剂的均值;2Sourcei表示第个颗粒物来源的第个颗粒物示踪剂的方差.
2 结果与分析
2.1 最佳指纹因子筛选
2.1.1 示踪剂的保守性检验 表1比较了悬浮颗粒物源中示踪剂的浓度,标准范围检验的结果和悬浮颗粒物示踪剂浓度平均值与颗粒物源地样点的平均值比较结果表明,所有指纹因子均保守.
表1 五种物源示踪剂浓度平均值(ave)、最小值(min)、最大值(max)和标准偏差(SD)
2.1.2 K-W H检验 根据分析步骤,将颗粒物源数据导入到SPSS 24中,利用Kruskal-Wallis非参数检验对剔除了异常值的颗粒物源地数据进行检验,计算K-W统计量及其概率值(表2).根据计算结果对各溯源点对应的源地土壤中13种待筛选的指纹因子进行初步筛选,排除潜在源地种差异不显著的因子,并剔除其中的非保守的指纹因子,通过检验的指纹因子可进入下一步的多元判别分析中.
表2 Kruskal-Wallis H检验结果
Kruskal-Wallis H检验的结果表明,绝大多数指纹因子组间差异显著,仅有1个指纹因子As的值>0.05,未通过检验,其余十二种都可作为初步筛选的指纹因子,并进入下一步的多元判别分析中.
2.1.3 DFA检验 将Kruskal-Wallis H检验筛选出的不同源地间差异显著的指纹因子,进入多元判别分析(DFA)[28],找出最佳复合指纹因子.在SPSS软件中运用逐步判别分析法,计算每个步数的Wilks’ lambda与指纹因子辨别正确率(表3).若Sig<0.05,则对应的判别函数具有统计学意义,判别结果可靠.下中的Sig值均<0.05,说明本研究中建立的各判别函数均具有统计学意义,可用于悬浮颗粒物源地的辨别.
表3 DFA检验结果
在上一步筛选后得到的12个指纹因子中,共有5个指纹因子(Mg、Al、Mn、Pb、Fe)具有判别能力,其累积指纹因子辨别正确率分别为48.8%、73.2%、63.4%、73.2%、78.0%,说明该组合能够较好地判别悬浮颗粒物源地,可入选最佳指纹因子组合.其中的Mg和Al因子的单指纹因子辨别率最高,为48.8%和43.9%;其次是Fe、Mn和Pb.根据Carter等[55]的研究成果,累计指纹因子辨别正确率在70%以上,说明判别效果较好.
2.2 来源解析
各溯源地的悬浮颗粒物源贡献比率平均值和标准差见表4.在摘要统计表中,为了能够更加直观地比较各悬浮颗粒物源的贡献率大小,将其平均值作为源贡献比率,制成横向百分比条形图(图2),其中C0数据为各溯源样点指纹因子平均值.
由图2和表4可以看出,总体而言,湾外颗粒物和河口颗粒物是对悬浮颗粒物贡献率最高的来源,C1和C3的沉积物贡献率次之,这两个点位比较靠近堤岸,周围有滨海公园,受人为环境影响较大,造成沉积物贡献率达到30.9%和22.1%,而其他点位沉积物的贡献率最低仅为5%,各点位均值的贡献率仅7.7%,是各类源中最低的.红树林土壤和堤岸土的贡献率在各点位的贡献率都较低,红树林在各点位的贡献率最低为C8的5.7%,最高为C14的11.6%,各点位的含量平均值计算出来的贡献率也仅有10%,堤岸土在各点位的贡献率最低为C8的6.1%,最高为C1的13.4%,各点位均值得到的贡献率为10.5%,相对于其他来源红树林和堤岸土的影响较小.河口颗粒物的贡献率最高达到了58.9%,该点位最靠近茅岭江汇入的河口,说明较于沉积物来说,该点颗粒物的迁移影响更大.湾外颗粒物对各点位的贡献率最高达到了68.6%,其次是53.4%,这两个点位均是靠近北部湾,由潮汐带入的颗粒物给茅尾海带来较大的影响.
各潜在源的贡献表现出来的差异明显,红树林作为海岸带重要生态系统,因其发达的根系起到了促淤固滩和净化水质的功能,使得红树林对茅尾海颗粒物的贡献相对较低;堤岸土对茅尾海颗粒物的贡献主要是通过地表径流,由于茅尾海周围有一条护岸带,拦截了部分由堤岸带入的颗粒物,也因距离相对较远,运输能力不如悬浮颗粒物;另外茅尾海作为北部湾的内海,内宽口窄的形状造成风浪很小,这极大程度上降低了沉积物的再悬浮作用,从而导致沉积物对颗粒物的影响相对较低;养殖区主要集中在河流输入影响区,养殖过程中产生的废弃物直接影响了茅尾海颗粒物的产生,造成河口的颗粒物对河流输入影响区的贡献较大;距离养殖区较远的茅尾海南部主要受到潮汐的影响,决定了湾外颗粒物对潮汐影响区的贡献.因此,需要特别针对河流采取措施减少河流输送带来的颗粒物影响.
表4 各溯源地的泥沙源贡献比率平均值和标准差
注:*括号中的值表示不确定性范围(90%置信度范围:5%~95%).
图2 各悬浮颗粒物源贡献百分比
3 结论
3.1 利用SPSS进行指纹因子筛选得出Mg、Al、Mn、Pb、Fe五种重金属组合可作为最佳指纹因子,总判别正确率达到78%,能较好的分辨各潜在来源地.
3.2 贝叶斯模型结果表明,茅尾海悬浮颗粒物主要来源于河口颗粒物和湾外颗粒物,贡献率最高达到58.9%和68.6%,说明水体中的悬浮颗粒物受到的水流扰动作用较强;距离湾外近的点位湾外颗粒物贡献较多,距离河口近的点位河口颗粒物贡献较多.而沉积物、红树林土壤和堤岸土对各点位的贡献率都相对较小.
3.3 鉴于茅尾海主要水产养殖区位于河流汇入影响区,为了有效提升茅尾海水产养殖和水生态系统的健康发展,应采取措施有效控制河流的颗粒物输送.
[1] 吴文成,任露陆,蔡信德.茅尾海沉积物营养物质空间分布特征研究[J]. 农业环境科学学报, 2014,33(1):162-171.
Wu WC, Ren L L, Cai X D. Spatial distribution of nutrients in sediments of the Maowei Sea [J]. Journal of Agricultural Environmental Sciences, 2014,33(1):162-171.
[2] 高金荣,赵则春.钦州茅尾海海域化学需氧量的分布特征及与富营养化的关系[J]. 海洋湖沼通报, 2021,43(3):145-150.
Gao J R, Zhao Z C. Distribution characteristics of chemical oxygen demand in maowei sea area of Qinzhou and its relationship with eutrophication [J]. Bulletin of Ocean Limnology, 2021,43(3):145-150.
[3] 杨 斌,方怀义,钟秋平,等.钦州湾夏季营养盐的分布特征及富营养化评价[J]. 海洋通报, 2012,31(6):640-645.
Yang B, Fang W Y, Zhong Q P, et al. Distribution characteristics of nutrients and eutrophication assessment in summer in Qinzhou Bay [J]. Ocean Bulletin, 2012,31(6):640-645.
[4] 蓝文陆,彭小燕.茅尾海富营养化程度及其对浮游植物生物量的影响[J]. 广西科学院学报, 2011,27(2):109-112.
Lan W L, Peng X Y. Eutrophication status and its impact on phytoplankton biomass in the Maowei Sea [J]. Journal of Guangxi Academy of Sciences, 2011,27(2):109-112.
[5] 韦重霄,赵 爽,宋立荣,等.钦州湾内湾茅尾海营养状况分析与评价研究[J]. 环境科学与管理, 2017,42(9):148-153.
Wei C X, Zhao S, Song L R, et al. Analysis and assessment of nutrient status in Maowei Sea of Inner Qinzhou Bay [J]. Environmental Science and Management, 2017,42(9):148-153.
[6] 范成新,张 路,秦伯强,等.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算[J]. 中国科学(D辑:地球科学), 2003,33(8):760-768.
Fan C X, Zhang L, Qin B Q, et al. Estimation of phosphorus release in suspended particulate matter in Taihu Lake under the action of wind and waves [J]. [J]. Science in China (Series D: Earth Sciences), 2003, (8):760-768.
[7] Li X, Guo M, Duan X, et al. Distribution of organic phosphorus species in sediment profiles of shallow lakes and its effect on photo- release of phosphate during sediment resuspension [J]. Environment international. 2019,130:104916.
[8] Hu B, Wang P, Wang C, et al. Photogeochemistry of particulate organic matter in aquatic systems: A review [J]. Science of The Total Environment, 2022,806:150467.
[9] Guo M, Li X, Song C, et al. Photo-induced phosphate release during sediment resuspension in shallow lakes: A potential positive feedback mechanism of eutrophication [J]. Environmental pollution (1987), 2020,258:113679.
[10] 张毅敏,王 宇,杨 飞,等.太湖不同生态型湖区悬浮颗粒磷空间分布和降解速率[J]. 中国环境科学, 2016,36(7):2128-2138.
Zhang Y M, Wang Y, Yang F, et al. Spatial distribution and degradation rate of phosphorus of suspended particles in different ecological lake areas of Taihu Lake [J]. Chinese Environmental Science, 2016,36(7):2128-2138.
[11] 王珊珊,潘存鸿,李 宏,等.杭州湾泥沙中重金属元素的分布及影响因素[J]. 中国环境科学, 2017,37(12):4701-4709.
Wang S S, Pan C H, Li H, et al. Distribution and influencing factors of heavy metal elements in sediment in Hangzhou Bay [J]. Chinese Environmental Science, 2017,37(12):4701-4709.
[12] 秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J]. 湖泊科学, 2002,14(3):193-202.
Qin B Q. A Preliminary Study on the occurrence mechanism and control pathway of eutrophication in Shallow Lakes in the middle and lwer reaches of the Yangtze River [J]. Lake Science, 2002, 14(3):193-202.
[13] Yi Y, Yang Z, Zhang S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin [J]. Environmental Pollution, 2011,159(10):2575-2585.
[14] 周子柯,王永平,滕昊蔚,等.复合指纹技术示踪泥沙来源研究进展[J]. 泥沙研究, 2021,46(6):1-9.
Zhou Z K, Wang Y P, Teng H W, et al. Research progress on tracer sediment source by composite fingerprint technology [J]. Sediment Research. 2021,46(6):1-9.
[15] Russell M A, Walling D E, Hodgkinson R A. Suspended sediment sources in two small lowland agricultural catchments in the UK [J]. Journal of Hydrology, 2001,252(1):1-24.
[16] Walling D E, Collins A L, Stroud R W. Tracing suspended sediment and particulate phosphorus sources in catchments [J]. Journal of Hydrology, 2008,350(3):274-289.
[17] Collins A L, Walling D E, Webb L, et al. Apportioning catchment scale sediment sources using a modified composite fingerprinting technique incorporating property weightings and prior information [J]. Geoderma, 2010,155(3/4):249-261.
[18] Liu B, Storm D E, Zhang X J, et al. A new method for fingerprinting sediment source contributions using distances from discriminant function analysis [J]. CATENA, 2016,147:32-39.
[19] Zhang X C J, Liu B L. Using multiple composite fingerprints to quantify fine sediment source contributions: A new direction [J]. Geoderma, 2016,268:108-118.
[20] Motha J A, Wallbrink P J, Hairsine P B, et al. Determining the sources of suspended sediment in a forested catchment in southeastern Australia [J]. Water resources research, 2003,39(3):1056.
[21] Hughes A O, Olley J M, Croke J C, et al. Sediment source changes over the last 250 years in a dry-tropical catchment, central Queensland, Australia [J]. Geomorphology, 2009,104(3):262-275.
[22] Laceby J P, Olley J. An examination of geochemical modelling approaches to tracing sediment sources incorporating distribution mixing and elemental correlations [J]. Hydrological Processes, 2015, 29(6):1669-1685.
[23] Collins A L, Walling D E, Leeks G J L. Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique [J]. Catena (Giessen), 1997,29(1):1-27.
[24] Krause A K, Franks S W, Kalma J D, et al. Multi-parameter fingerprinting of sediment deposition in a small gullied catchment in SE Australia [J]. CATENA, 2003,53(4):327-348.
[25] Poleto C, Merten G H, Minella J P. The identification of sediment sources in a small urban watershed in southern Brazil; an application of sediment fingerprinting [J]. Environmental technology, 2009,30 (11):1145-1153.
[26] Gellis A C, Noe G B, Gellis A C, et al. Sediment source analysis in the Linganore Creek watershed, Maryland, USA, using the sediment fingerprinting approach; 2008 to 2010 [J]. Journal of soils and sediments, 2013,13(10):1735-1753.
[27] 常维娜,周慧平,高 燕.基于复合指纹法的九乡河小流域泥沙来源解析[J]. 水土保持学报, 2014,28(6):106-110.
Chang W N, Zhou H P, Gao Y. Sediment source analysis of Jiuxiang river small watershed based on composite fingerprint method [J]. Journal of soil and water conservation, 2014,28(6):106-110.
[28] 陈太丽,史忠林,王永艳,等.三峡水库典型支流消落带泥沙颗粒态磷复合指纹示踪研究[J]. 农业工程学报, 2019,35(20):118-124.
Chen T L, Shi Z L, Wang Y Y, et al. Fingerprinting particulate phosphorus absorbed by sediments for riparian zone deposits in tributary of Three Gorges Reservoir [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(20):118-124.
[29] 郭 进,文安邦,严冬春,等.复合指纹识别技术定量示踪流域泥沙来源[J]. 农业工程学报, 2014,30(2):94-104.
Guo J, Wen A B, Yan D C, et al. Quantifying catchment scale sediment source using composite fingerprinting technique [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014,30(2):94-104.
[30] 周慧平,常维娜,张龙江.基于泥沙指纹识别的小流域颗粒态磷来源解析[J]. 农业工程学报, 2015,31(13):251-256.
Zhou H P, Chang W N, Zhang L J. Source analysis of particulate phosphorus in small watershed based on sediment fingerprint identification [J]. Journal of agricultural engineering, 2015,31(13): 251-256.
[31] 陈方鑫,张含玉,方怒放,等.利用两种指纹因子判别小流域泥沙来源[J]. 水科学进展, 2016,27(6):867-875.
Chen F X, Zhang HY, Fang N F, et al. Using two fingerprint factors to distinguish sediment sources in small watershed [J]. Advances in water science 2016,27(6):867-875.
[32] 杨明义,徐龙江.黄土高原小流域泥沙来源的复合指纹识别法分析[J]. 水土保持学报, 2010,24(2):30-34.
Yang M Y, Xu L J. Analysis of sediment sources in small watershed of Loess Plateau by composite fingerprint identification method [J]. Journal of soil and water conservation, 2010,24(2):30-34.
[33] 赵恬茵.复合指纹识别法研究黄土高原小流域泥沙来源[D]. 杨凌:西北农林科技大学, 2017.
Zhao T Y. Study on sediment source of small watershed in Loess Plateau by composite fingerprint identification method [D]. Yangling: Northwest University of agriculture and forestry science and technology, 2017.
[34] 宓 莹.云南大石坝水库流域土壤侵蚀与沉积泥沙来源的关系研究[D]. 南京:南京师范大学, 2015.
Mi Y. Study on the relationship between soil erosion and sediment sources in dashiba reservoir basin, Yunnan [D]. Nanjing: Nanjing Normal University, 2015.
[35] 汪 南.基于复合指纹分析法的元江干热河谷区小流域泥沙来源研究[D]. 昆明:云南大学, 2018.
Wang N. Study on sediment source of small watershed in dry and hot valley of Yuanjiang River Based on composite fingerprint analysis [D]. Kunming: Yunnan University, 2018.
[36] Huang D, Du P, Des E W, et al. Using reservoir deposits to reconstruct the impact of recent changes in land management on sediment yield and sediment sources for a small catchment in the Black soil region of northeast China [J]. Geoderma, 2019,343:139-154.
[37] 杜鹏飞,黄东浩,秦 伟,等.基于不同模型不同指纹因子的东北黑土区小流域泥沙来源分析[J]. 水土保持学报, 2020,34(1):84-91.
Du P F, Huang D H, Qin W, et al. Sediment source analysis of small watershed in Northeast Black Soil Area Based on different models and different fingerprint factors [J]. Journal of soil and water conservation, 2020,34(1):84-91.
[38] Lin J, Huang Y, Wang M, et al. Assessing the sources of sediment transported in gully systems using a fingerprinting approach: An example from South-east China [J]. CATENA, 2015,129:9-17.
[39] 郝福星,黄炎和,林金石,等.指纹法研究花岗岩区典型崩岗小流域悬浮泥沙来源[J]. 水土保持学报, 2017,31(2):45-49.
Hao F X, Huang Y H, Lin J S, et al. Study on the source of suspended sediment in typical collapse hill small watershed in granite area by fingerprint method [J]. Journal of soil and water conservation, 2017, 31(2):45-49.
[40] 周 曼,林嘉辉,黄炎和,等.复合指纹法分析红壤区强度开发小流域泥沙来源[J]. 水土保持学报, 2019,33(1):20-24.
Zhou M, Lin J H, Huang Y, et al. Using composite fingerprints to qualify sediment source in watershed with intensive exploitation on red soil region [J]. Journal of Soil and Water Conservation, 2019, 33(1):20-24.
[41] 赖廷和,何本茂,韦蔓新,等.钦州湾内湾贝类养殖海区水环境特征及营养状况初探[J]. 黄渤海海洋, 2001,19(4):51-55.
Lai T H, he B M, Wei M X, et al. Preliminary study on water environment characteristics and nutritional status of shellfish culture area in Inner Bay of Qinzhou Bay [J]. The Yellow Sea and the Bohai Sea, 2001,19(4):51-55.
[42] 刘永泉,凌博闻,徐鹏飞.谈广西钦州茅尾海红树林保护区的湿地生态保护[J]. 河北农业科学, 2009,13(4):97-99.
Liu Y Q, Ling B W, Xu P F. On the wetland ecological protection of Maowei Hai Mangrove Reserve in Qinzhou, Guangxi [J]. Hebei Agricultural Science, 2009,13(4):97-99.
[43] 张伯虎,陈沈良,谷国传.广西沿岸重点港湾的潮型与潮汐特征[J]. 海洋学研究, 2010,28(3):9-16.
Zhang B H, Chen S L, Gu G C. Tidal patterns and tidal characteristics of key coastal harbors in Guangxi [J]. Oceanographic research, 2010, 28(3):9-16.
[44] 杨 斌,方怀义,许丽莉,等.钦州湾水质污染时空变化特征及驱动因素[J]. 海洋环境科学, 2017,36(6):877-883.
Yang B, Fang H Y, Xu L L, et al. Spatio-temporal variation characteristics and driving factors of water pollution in Qinzhou bay [J]. Marine Environmental Science, 2017,36(6):877-883.
[45] Wang J, Lu N, Fu B. Inter-comparison of stable isotope mixing models for determining plant water source partitioning [J]. The Science of the total environment, 2019,666:685-693.
[46] 周慧平,陈玉东,常维娜.指纹技术识别泥沙来源:进展与展望[J]. 水土保持学报, 2018,32(5):1-7.
Zhou H P, Chen Y D, Chang W N. Sediment source fingerprinting: Progresses and prospects [J]. Journal of Soil and Water Conservation, 2018,32(5):1-7.
[47] Smith H G, Karam D S, Lennard A T. Evaluating tracer selection for catchment sediment fingerprinting [J]. Journal of Soils and Sediments, 2018,18(9):3005-3019.
[48] 杜俊杉,马 英,胡晓农,等.基于双稳定同位素和MixSIAR模型的冬小麦根系吸水来源研究[J]. 生态学报, 2018,38(18):6611-6622.
Du J S, Ma Y, Hu X N, et al. Applying dual stable isotopes and a MixSIAR model to determine root water uptake of winter wheat [J]. Journal of Ecology, 2018,38(18):6611-6622.
[49] Anezaki K, Nakano T, Kashiwagi N. Estimation of polychlorinated biphenyl sources in industrial port sediments using a Bayesian Semifactor Model considering unidentified sources [J]. Environmental Science & Technology, 2016,50(2):765-771.
[50] Longman J, Veres D, Ersek V, et al. Quantitative assessment of Pb sources in isotopic mixtures using a Bayesian mixing model [J]. Scientific reports. 2018,8(1):6154-6170.
[51] 张 妍,张秋英,李发东,等.基于稳定同位素和贝叶斯模型的引黄灌区地下水硝酸盐污染源解析[J]. 中国生态农业学报(中英文), 2019,27(3):484-493.
Zhang Y, Zhang Q Y, Li Fadong, et al. Source identification of nitrate contamination of ground-water in Yellow River Irrigation Districts using stable isotopes and Bayesian model [J]. Chinese Journal of Eco-Agriculture, 2019,27(3):484-493.
[52] Liu C, Li Z, Dong Y, et al. Response of sedimentary organic matter source to rainfall events using stable carbon and nitrogen isotopes in a typical loess hilly-gully catchment of China [J]. Journal of hydrology, 2017,552:376-386.
[53] Moore J W, Semmens B X. Incorporating uncertainty and prior information into stable isotope mixing models [J]. Ecology Letters, 2008,11(5):470-480.
[54] Demopoulos A W J, Mcclain-Counts J P, Bourque J R, et al. Examination of Bathymodiolus childressi nutritional sources, isotopic niches, and food-web linkages at two seeps in the US Atlantic margin using stable isotope analysis and mixing models [J]. Deep-sea research, 2019,148:53-66.
[55] Carter J, Owens P, Walling D, et al. Fingerprinting suspended sediment sources in a large urban river system [J]. The Science of The Total Environment. 2003,314-316:513-534.
Analysis of the source of suspended particulate matter in the Maowei Sea based on composite fingerprint map and Bayesian model.
LIU Hai-xia1,2,3, LI Su-xia2,3*, LIU Guang-long2,4**, HUANG Kai-xuan5, YANG Bin3, SU Jing-jun5, WANG Jie4, ZHANG Jin-yi2, HOU Jing-yao2
(1.School of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China;2.School of Resources and Environment, Beibu Gulf University, Qinzhou 535011, China;3.Guangxi Key laboratory of Marine Disaster in the Beibu Gulf University, Qinzhou 535011, China;4.School of Resources and Environment, Central China Agricultural University, Wuhan 430070, China;5.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)., 2022,42(6):2844~2851
Toreveal the source of suspended particulate matter in Maoweisea, samples of potential sources of suspended particulate matter such as mangrove soil, embankment soil, estuarine particulate matter, Maowei Sea sediment and particulate matter outside the Bay in Maowei Sea Basin were collected. Based on multivariate statistical composite fingerprinting method, the optimal fingerprint factor combination was formatted, and then the contribution rates of five potential sources to suspended particulate matter in Maowei Sea are obtained by Bayesian mixed model. The results show that five fingerprint elements of Mg, Al, Mn, Pb and Fe can be used as the best combination of fingerprint factors, and the cumulative discrimination accuracy rate is 78%. The results of the Bayesian mixed model showed that the suspended particulate matter in Maowei Sea is mainly derived from the estuary and the outer bay transport, and the contribution rate reaches 58.9% and 68.6%. Among them, the area near the estuary is mainly affected by the river inflow, and the contribution rate of estuarine particulate matter reaches 42.2%~58.9%; In the areas close to the outer bay, the contribution rate of particulate matter outside the bay was 44.9%~68.6%. The contribution rate of sediment at each point was low, and the contribution rate of mangrove soil and embankment soil was about 10%. In general, particulate matter brought in by estuarine inflow and tidal action is the main source of suspended particulate matter in the Maowei Sea.
Bayesian model;composite fingerprinting;particulate matter;source resolution
X55
A
1000-6923(2022)06-2844-08
刘海霞(1998-),女,湖北仙桃人,桂林理工大学硕士研究生,主要从事水体污染控制与生态修复研究.
2021-11-12
国家自然科学基金资助项目(31960242);广西自然科学基金资助项目(2020GXNSFAA297080,2016GXNSFAA380242)
* 责任作者, 教授, 284137449@qq.com