基于斯通利波及电成像测井数据对火成岩裂缝地层的特征分析
2022-06-23崔裔曈王祝文徐方慧韩锐羿齐兴华
崔裔曈, 王祝文, 徐方慧,韩锐羿,齐兴华
吉林大学地球探测科学与技术学院,长春 130026
0 引言
随着油气需求的日益增加,以及人们对常规油气田的过度开采,非常规油气藏的勘探开发已成为未来油气开发十分重要的潜力领域。火成岩储层属于非常规油气藏,其显著特征为地层的低孔隙度和低渗透率[1],但是这类油气藏中往往有可观的油气显示[2],说明储层岩石内含有发育的裂缝。所以有效地识别和评价裂缝成为提高非常规油气储层油气识别和可靠性解释的重要手段。
由于弹性波在裂缝地层中的频散和衰减特征,声波测井在识别地层中的裂缝方面一直有着独特的优势。陈雪莲等[3]、唐晓明等[4-5]、张聪慧等[6]、钱玉萍[7]通过研究孔、裂隙地层的声波测井响应特征,提出了含孔、裂隙介质弹性波动的统一理论,发现裂缝可以分别对纵波、横波、斯通利波、伪瑞利波以及弯曲波造成不同程度的衰减,对其主频和到时也有差异性的影响;并研究了裂隙密度、裂隙纵横比和渗透率等参数对斯通利波和弯曲波的影响。Hornby等[8]用平板状裂缝模型模拟了单一裂缝下斯通利波的传播特性,发现斯通利波在遇到裂缝时会产生反射斯通利波。黄文新等[9]研究发现反射斯通利波和反射系数可以指示地层中裂缝的宽度。马修刚等[10]将偶数横波反射成像和微电阻率成像测井结合,可探测井旁10 m以外的裂缝、断层。通过前人对含裂缝地层声波测井响应特征的研究,我们发现纵波、横波、斯通利波对含裂缝地层均有不同的响应特征,其中斯通利波的响应特征变化比纵波、横波的变化大得多,更易于观察,而且对渗透性地层或裂缝比较敏感,故在评价裂缝方面更具优势。
电成像测井能够将采集到的数据转换成直观的图像,具有较高的垂直分辨率,可以较为准确地反映井周地层构造。其中,用电成像测井方法识别与油气储集有关的裂缝的研究较为成熟,成果也较多。Lapointe等[11]、陈钢花等[12]利用电成像资料建立了裂缝识别模式。Al-Rougha[13]、景建恩等[14]提出了利用电成像测井数据对碳酸盐储层的裂缝进行系统描述的方法。潘保芝等[15]将常规测井资料与电成像测井资料结合,对火成岩储层进行了评价,可以较好地识别裂缝。徐方慧等[16]对电成像图像进行去噪处理,使其能够更好地识别裂缝。左程吉等[17]、吴兴能等[18]、徐方慧等[19]、周彦球等[20]利用通过成像测井资料刻度孔隙度得到的孔隙度频率分布谱和区间孔隙度图像,对储层孔隙度的分布特征进行了定量评价,进而识别地层中的裂缝。魏伯阳等[21]利用条件生成对抗网络法自动识别电成像图像中的裂缝。
为了更加准确地运用声波和电成像测井资料共同评价地层中的裂缝,本文首先建立了裂缝地层的理论模型,采用变网格有限差分方法来模拟弹性波在裂缝性地层的传播,从理论上得到了斯通利波和地层裂缝之间的关系;再对实测单极子阵列声波的原始波列进行波场分离(中值滤波),利用得到的反射斯通利波和直达斯通利波计算反射系数;最后结合电成像资料,利用其刻度的孔隙度分布谱及孔隙度区间分布图像对地层裂缝进行综合评价,得到斯通利波和电成像测井对裂缝的响应特征,以期为地层裂缝的识别与评价提供依据。
1 原理
1.1 计算模型建立和数值模拟实现
要进一步利用声波测井资料评价裂缝地层,需要研究不同数量的裂缝对斯通利波反射系数的影响。首先基于二维轴对称柱坐标建立含裂缝的弹性均匀火成岩地层模型(图1)。井孔和裂缝中充满了水,井孔外为弹性均匀介质(火成岩);井孔半径R=10 cm;声源和接收器均放置在井孔中。波场模拟过程采用非分裂完全匹配层吸收边界[22]。
模型介质的声学参数如表1所示。火成岩地层岩石密度一般在2 500~2 800 kg/m3之间,本文选择ρ=2 650 kg/m3。
图1 裂缝地层的井孔模型
表1 地层和井孔的参数
单极子阵列声波测井二维柱坐标弹性波传播方程为:
(1)
(2)
(3)
(4)
(5)
(6)
式中:t为时间;τrr、τzz和τθθ为正应力分量;τrz、τrθ和τθz为剪切应力分量;vr和vz分别为r方向和z方向上的速度分量;λ和μ为拉梅常数。
采用雷克子波声波作为声源,并将声源的中心频率设置为1.5 kHz。在这种低频条件下,纵波和横波等高频的体波无法被激发,井孔中只存在斯通利波。由于火成岩地层中发育裂缝的宽度一般小于2 mm,并且需要几个网格来表示地层裂缝的宽度,因此采用变网格有限差分方法[23-25]来模拟弹性波在裂缝性地层的传播。网格被划分为3种计算区域,两次网格变化的比率均为5。在无裂缝区域,网格步长为1 cm;在靠近裂缝区域,网格步长为1/5 cm;在裂缝区域,网格步长为1/25 cm。
图2给出了在均匀地层中分别利用变网格有限差分法和实轴积分法模拟得到的斯通利波波形对比,可以看到,两种波形非常接近,说明变网格有限差分方法是有效的。
图2 变网格有限差分法与实轴积分法斯通利波波形对比
1.2 斯通利波波场分离
在进行波场分离之前,首先需对原始声波数据进行去增益处理,还原声波数据的真实幅值[26]:
(7)
式中:Araw为原始波形的幅值;Aopt为优化后波形的幅值;G为自动增益控制因子;S为自动增益控制值。
在声波全波列记录中,纵波、横波以及伪瑞利波都具有较高频率,而斯通利波的频率很低,主要存在于4 kHz以下的低频部分。根据这一特点,可以先用低通滤波器在频率域将声波全波列记录中频率较高的波滤除,得到所需要的低频斯通利波;再采用中值滤波的方法分离斯通利波,得到直达斯通利波和反射斯通利波;最后利用反射波和直达波的频谱求取反射系数[27]。求取反射系数r(k)的公式为
(8)
式中:R(k)为反射斯通利波的频谱;D(k)为直达斯通利波频谱;k为频率。如果D(k)接近0,那么R(k)便会出现极值。为了避免这种情况,可用下面的公式来代替:
(9)
式中:D*(k)为D(k)的共轭频谱;E为D(k)·D*(k)的峰值。
1.3 孔隙度分布谱分析技术
电成像测井采用侧向测井的屏蔽测井原理,具有与浅侧向测井基本一致的探测深度,探测深度较浅,测量得到的数据大致反映井壁地层冲洗带的电阻率。所以,我们可以用浅侧向电阻率和电成像电阻率代替冲洗带电阻率,再用常规处理得到的有效孔隙度,根据冲洗带Archie公式求取相应的视孔隙度[28-29]。
冲洗带Archie公式为
(10)
式中:φ为孔隙度;m为胶结指数;Rxo为冲洗带电阻率;a、b为与岩性有关的系数;Rmf为泥浆溶液电阻率;Sxo为冲洗带含水饱和度;n为饱和度指数。得到的地层视孔隙度为
(11)
式中:φi为视孔隙度;RLLS为浅侧向电阻率;Ri为电成像电阻率;φ0为有效孔隙度;i为电成像的第i个纽扣电极。
通过上面的方法,可以简化数据处理过程,消除Archie公式中a、b、n和Sxo等因素的不确定性对处理结果的影响。
取一定的计算窗口和步长,对每个深度点上求得的视孔隙度进行频率直方统计,得到每个窗口内的视孔隙度频率分布(图3)。
孔隙度频率分布图通常由单个、两个或两个以上的孔隙度峰组成。峰值的高低表示不同的视孔隙度在地层中所占比例的大小,比例越大,峰值越高,反之越低;峰的宽窄表示不同大小的孔隙在地层中的分布是否均匀,若均匀,峰较窄,反之则较宽;单峰说明地层主要发育原生孔隙,双峰或多峰则主要是由次生孔隙发育造成的。
f表示视孔隙度的统计频率。
2 理论结果与综合解释
2.1 斯通利波数值模拟结果
根据1.1节中建立的模型,我们模拟了弹性均匀地层中无裂缝、只有一条裂缝和有多条裂缝情况下斯通利波的传播特性。
图4a展示了地层中只有一条裂缝、且裂缝宽度为0.8 mm时模拟得到的全波波形。由图4a可见,其展示的全波波形只有斯通利波波形,说明采用低频声源保证井孔中只存在斯通利波是可行的。
将模拟得到的无裂缝均匀地层中的斯通利波作为直达波,从图4a中减去直达波分离出反射斯通利波。图4b是分离得到的源距为1.8 m的反射斯通利波波形和均匀地层中同源距的斯通利波波形。
对直达和反射斯通利波进行傅里叶变换可得到直达和反射斯通利波的频率谱。利用直达和反射斯通利波的频率谱可以计算得到反射斯通利波的反射系数。图5为含不同条数裂缝的地层中的斯通利波反射系数。由图5可知,裂缝的数量越多,反射系数越大。
2.2 实测结果综合解释
本文采用辽河盆地东部凹陷地区H井的测井资料进行实测结果的综合解释。辽河盆地位于渤海湾盆地北部、郯庐断裂带上,受郯庐断裂长期活动影响,盆地内构造活动频繁,岩浆活动十分活跃,中生代至新生代广泛发育大量火成岩体且普遍破碎,裂缝广泛发育。H井位于辽宁盆地东部凹陷中南段,钻遇的火山岩主要有玄武岩、粗面岩和少量沉火山碎屑岩等。图6为截取的H井具有代表性井段的测井结果,图7是其对应的岩心切片和岩心照片。
图4 裂缝地层中的斯通利波(a)以及其波场分离后的波形图(b)
N为裂缝数量。
由图6可见,低通滤波得到的斯通利波波列(图6f)中纵波和横波已经基本被滤除,中值滤波得到的直达斯通利波(图6g)和反射斯通利波(图6h)分离较好,计算得到的电成像孔隙度分布谱(图6j)形态较好。在此基础上制作了电成像区间孔隙度图谱(图6l)。区间孔隙度是对各深度点小于0.03、0.05、0.07、0.10、0.13、0.15、0.17、0.20、0.50的孔隙度区间组分进行累加统计,得到类似核磁共振测井孔隙分布的区间孔隙度分布曲线PS3、PS5、…、PS50,并在剖面上用不同的颜色逐项显示,可直观地表示出不同孔隙度的占比及各自区间孔隙度随深度的变化,反映了不同孔隙区间的分布情况。
ft(英尺)为非法定计量单位,1 ft=0.304 8 m,下同。
由图6可知,整个井段没明显扩径,井况良好。第Ⅲ部分中3 756.5 ~ 3 761.0 m井段中子密度值小且补偿密度值大,电阻率值高,电成像测井图件颜色明亮;同时孔隙度分布谱表现为靠前的单峰,陡而窄,说明该处地层中只发育部分原生孔隙,次生孔隙(裂缝)不发育。电成像区间孔隙度显示小孔隙占比很大。原始波列和斯通利波波列幅值明显高于其他层段,无明显反射斯通利波,反射系数很小,趋于0。图7e、f显示该处的岩性为致密的玄武岩,无裂隙显示。故综合以上测井资料判断该层段为致密层。
与致密层相比,第Ⅱ部分3 651.0 ~ 3 656.0 m井段补偿密度和电阻率都有所降低,中子密度值变大;电成像图件颜色较暗,且能够看到有裂缝发育;孔隙度分布谱显示频谱分布整体向孔隙度大的方向移动,以较宽的单峰和双峰为主,说明该处发育次生孔隙,即有裂缝发育,电成像区间孔隙度显示该处孔隙以中孔隙为主。原始波列和斯通利波波列幅值相较于Ⅲ区致密层段略低,反射斯通利波增强,直达斯通利波出现时滞现象,反射系数增大,且出现峰值。图7c、d显示该处地层的岩性为黑色玄武岩,孔隙和裂隙较为发育,岩心照片上可明显看见一组近垂直的裂缝以及一些不规则的细纹。故判断该处地层有裂缝发育。
第Ⅰ部分中3 616.0~3 622.0 m层段根据电成像图像可知,裂缝发育很好。孔隙度分布谱显示频谱分布靠后,孔隙度较大,峰形主要为双峰或多峰,谱平宽,说明该层段的次生孔隙(裂缝)发育很好;电成像区间孔隙度显示该层段中孔隙和大孔隙占比较高,说明该层段裂缝发育良好。在该层段,原始波列和斯通利波波列幅值明显低于Ⅲ致密层层段,且可以看到明显的“V”字型反射斯通利波,直达斯通利波时滞现象十分明显,反射系数出现峰值,且峰值很大,与Ⅲ致密层井段对比明显。该层段的岩心照片(图7a、b)显示该处为蚀变玄武岩,岩心切片上可以明显看到裂纹,岩心整体裂隙十分发育。故可以判断该层段裂缝十分发育。
a、b. 3 616.0~3 622.0 m;c、d. 3 651.0~3 656.0 m;e、f. 3 756.5~3 761.0 m。
综上,可以看出:裂缝越发育,反射系数越大,孔隙度分布谱频谱分布越靠后,大孔隙度所占比例越多,这与声波裂隙的理论模拟结果以及电成像孔隙度谱理论上的分析结果吻合较好;且声波和电成像测井分析结果可以很好地与岩心对应,说明利用声波测井和电成像测井方法识别和解释裂缝具有较高的可靠性和可信度。
3 结论
1)根据理论模型的数值模拟可知,裂缝数量越多,反射斯通利波越强,斯通利波反射系数越大。
2)在裂缝发育的地层,实测声波数据中斯通利波的直达波发生衰减,且有时滞现象;反射斯通利波能量增强,反射系数变大,这与理论模拟结果相吻合。
3)在裂缝性火成岩中,从电成像孔隙度分布谱和电成像区间孔隙度可直观地看出不同孔隙单元的比例,小孔隙占比大的地层岩性较为致密,大孔隙占比大的地层裂缝发育较好。
单一的测井方法对地层裂缝进行解释可能有多种情况产生,多种方法相结合对裂缝进行综合评价结果更可靠。